6.若cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,則sin(2α$+\frac{31π}{30}$)=( 。
A.$\frac{3}{5}$B.$\frac{7}{25}$C.$\frac{3}{4}$D.-$\frac{3}{5}$

分析 sin(2α$+\frac{31π}{30}$)=sin(2α+$\frac{8π}{15}$+$\frac{π}{2}$),再由誘導(dǎo)公式和二倍角的余弦公式,計算即可得到所求值.

解答 解:cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,
則sin(2α$+\frac{31π}{30}$)=sin(2α+$\frac{8π}{15}$+$\frac{π}{2}$)
=cos(2α+$\frac{8π}{15}$)=2cos2(α$+\frac{4π}{15}$)-1
=2×$\frac{16}{25}$-1=$\frac{7}{25}$.
故選:B.

點評 本題考查三角函數(shù)的求值,注意運用誘導(dǎo)公式和二倍角的余弦公式,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.
(1)A=45°,B=60°,a=$\sqrt{2}$,求b的值
(2)若△ABC的面積為$\frac{{\sqrt{3}}}{2}$,$c=2,A=\frac{π}{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果對定義在區(qū)間D上的函數(shù)f(x),對區(qū)間D內(nèi)任意兩個不相等的實數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x${\;}_{{\;}_{1}}$f(x2)+x2f(x1),則稱函數(shù)f(x)為區(qū)間D上的“H函數(shù)”,給出下列函數(shù)及函數(shù)對應(yīng)的區(qū)間
①y=$\frac{1}{3}$x3-$\frac{1}{2}$x2+$\frac{1}{2}$x,(x∈R)
②y=3x+cosx-sinx,x∈(0,$\frac{π}{2}$)
③f(x)=(x+1)e-x,x∈(-∞,1)
④f(x)=xlnx,x∈(0,$\frac{1}{e}$)
以上函數(shù)為區(qū)間D上的“H函數(shù)”的序號是①②(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的減函數(shù),則a的取值范圍是( 。
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{sin(\frac{π}{2}-x)cos(2π-x)tan(-x+5π)}{tan(π+x)sin(\frac{π}{2}+x)}$,則f($-\frac{43π}{3}$)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{\sqrt{3}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{x}{x-2}+cos\frac{π}{4}x$在[0,2)上的最大值為a,在(2,4]上的最小值為b,則a+b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當x∈(0,$\frac{π}{2}$)時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知sin$α=\frac{1}{3}$,α是第二象限角,則sin2α+cos2α=(  )
A.$\frac{7-4\sqrt{2}}{9}$B.$\frac{2\sqrt{2}-1}{3}$C.$\frac{7-3\sqrt{2}}{9}$D.$\frac{2\sqrt{3}-1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}(n∈N*)是首項為20的等差數(shù)列,其公差d≠0,且a1,a4,a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,當Sn>0時,求n的最大值;
(Ⅲ)設(shè)bn=5-$\frac{{a}_{n}}{4}$,求數(shù)列{$\frac{1}{_{2n}_{2n+2}}$}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案