已知|
a
|
=|
b
|
=2,(
a
+2
b
)
(
a
-
b
)
=-2,則
a
b
的夾角為
 
分析:利用向量的運算律將向量的等式展開,利用向量的平方等于向量模的平方,求出兩個向量的數(shù)量積;利用向量的數(shù)量積公式求出兩個向量的夾角余弦,求出夾角.
解答:解:設兩個向量的夾角為θ
(
a
+2
b
)•(
a
-
b
)=-2

a
2
+
a
b
-2
b
2
=-2

|
a
|=|
b
|=2

a
b
=2

cosθ=
1
2

θ=
π
3

故答案為
π
3
點評:本題考查向量的運算律、考查向量模的性質(zhì):向量模的平方等于向量的平方、考查利用向量的數(shù)量積公式求向量的夾角余弦.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①若|x-lgx|<x+|lgx|成立,則x>1;
②若p=a+
1
a-2
(a>2),q=(
1
2
)
x2-2
(x∈R),則p>q,
③已知|
a
|
=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x).
其中正確命題的序號是
 
.(把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù) y=f(x)=ax2+bx+c的圖象以y軸為對稱軸,已知a+b=1,而且若點(x,y)在 y=f(x)的圖象上,則點(x,y2+1)在函數(shù) g(x)=f[f(x)]的圖象上.
(1)求g(x)的解析式;
(2)設F(x)=g(x)-λf(x),問是否存在這樣的l(λ∈R),使f(x)在(-∞,-
2
2
)
內(nèi)是減函數(shù),在(-
2
2
,0)內(nèi)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≠b,a≠b+c,則關(guān)于x的方程
.
xb+ca+b-c
xaa+b-c
a-ba-ca-b
.
=0
的解集為
{a+b-c}
{a+b-c}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a-b=
1
2+
3
,b-c=
1
2-
3
,則a2+b2+c2-ab-bc-ca等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江模擬)已知|
a
|=|
b
|=|
a
-2
b
|=1
,則|
a
+2
b
|
=( 。

查看答案和解析>>

同步練習冊答案