設(shè)函數(shù)f(x)在定義域D上滿足f(
1
2
)=-1,f(x)≠0
,且當(dāng)x,y∈D時,f(x)+f(y)=f(
x+y
1+xy
)
,若數(shù)列{xn}中,x1=
1
2
xn+1=
2xn
1+
x
2
n
(xn∈D,n∈N*)
,則數(shù)列{f(xn)}的通項公式為
f(xn)=-2n-1
f(xn)=-2n-1
分析:f(x)+f(y)=f(
x+y
1+xy
)
,中,令x=y=xn,由數(shù)列{xn}中,x1=
1
2
,xn+1=
2xn
1+
x
2
n
(xn∈D,n∈N*)
,得2f(xn)=f(
2xn
1+xn2
)=f(xn+1),所以
f(xn+1)
f(xn)
=2,由f(x1) =f(
1
2
) =-1
,能求出f(xn).
解答:解:∵函數(shù)f(x)在定義域D上滿足f(
1
2
)=-1,f(x)≠0

且當(dāng)x,y∈D時,f(x)+f(y)=f(
x+y
1+xy
)
,
數(shù)列{xn}中,x1=
1
2
,xn+1=
2xn
1+
x
2
n
(xn∈D,n∈N*)
,
∴2f(xn)=f(
2xn
1+xn2
)=f(xn+1),
f(xn+1)
f(xn)
=2,
f(x1) =f(
1
2
) =-1
,
∴f(xn)=-2n-1
故答案為:f(xn)=-2n-1
點評:本題首先考查等差數(shù)列、等比數(shù)列的基本量、通項,結(jié)合含兩個變量的不等式的處理問題,數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時,f(x)=
a
x
-x2
(a為實數(shù)).
(1)若f(
1
2
)=-2
,求a的值;
(2)當(dāng)x∈(0,1]時,求f(x)的解析式;
(3)當(dāng)a>2時,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K.
取函數(shù)f(x)=2-|x|.當(dāng)K=
1
2
時,函數(shù)fK(x)的單調(diào)遞增區(qū)間為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,-1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù):fK(x)=
f(x),f(x)≤K
1
f(x)
,f(x)>K
,取函數(shù)f(x)=a11(a>1).當(dāng)K=
1
a
時,函數(shù)f(x)值域是(  )
A、[0,
1
a
]∪[1,a)
B、(0,
1
a
]∪[1,a]
C、(0,1]∪[
1
a
,a)
D、(0,
1
a
]∪[1,a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x+1,則f(
3
2
)
=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),是否存在這樣的實數(shù)a,使得不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]都成立?若存在,試求出實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案