【題目】已知函數(shù)f(x)=xlnx
(1)求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù) 在[1,e]上的最小值為 ,求a的值;
(3)若k∈Z,且f(x)+x﹣k(x﹣1)>0對(duì)任意x>1恒成立,求k的最大值.
【答案】
(1)解:∵f(x)=xlnx∴f′(x)=lnx+1
∴f′(1)=1,f(1)=0
則切線方程為y﹣0=1(x﹣1),即y=x﹣1
(2)解:F(x)=lnx﹣ ,F(xiàn)′(x)= ,
①當(dāng)a≥0時(shí),F(xiàn)′(x)>0,F(xiàn)(x)在[1,e]上單調(diào)遞增,F(xiàn)(x)在[1,e]上的最小值為F(1)=﹣a= ,解得a=﹣ (0,+∞),故舍去.
②當(dāng)a∈(﹣1,0)時(shí),F(xiàn)(x)在[1,e]上單調(diào)遞增,F(xiàn)(x)在[1,e]上的最小值為F(1)=﹣a= ,解得a=﹣ (﹣1,0),故舍去
③當(dāng)a∈[﹣e,﹣1]時(shí),F(xiàn)(x)在[1,﹣a]上單調(diào)遞減,F(xiàn)(x)在[﹣a,e]上遞增,F(xiàn)(x)在[1,e]上的最小值為F(﹣a)=ln(﹣a)+1=
解得a=﹣ ∈[﹣e,﹣1],故符合題意.
④當(dāng)a∈(﹣∞,﹣e)時(shí),F(xiàn)(x)在[1,e]上單調(diào)遞減,F(xiàn)(x)在[1,e]上的最小值為F(e)=1﹣ = ,解得a=﹣ (﹣∞,﹣e),故舍去
綜上:a=﹣
(3)解:令g(x)=f(x)+x﹣k(x﹣1)=xlnx+x﹣k(x﹣1)(x>1)g'(x)=lnx+2﹣k(x>1)
①當(dāng)k≤2時(shí),g'(x)>0在(1,+∞)上恒成立,g(x)在(1,+∞)上恒成立,g(x)min=g(1)=1>0
②當(dāng)k>2時(shí),令g'(x)=0得x=ek﹣2
當(dāng)x變化時(shí),g'(x)、g(x)變化情況如下表:
x | (1,ek﹣2) | ek﹣2 | (ek﹣2,+∞) |
g′(x) | ﹣ | 0 | + |
g(x) | 減函數(shù) | 極小值 | 增函數(shù) |
∴ 即ek﹣2(k﹣2)+ek﹣2﹣k(ek﹣2﹣1)>0
即k>ek﹣2,∴l(xiāng)nk>k﹣2,∴l(xiāng)nk﹣k+2>0,
令h(k)=lnk﹣k+2,(k>0).
h′(k)= ,當(dāng)k∈(0,1)時(shí),h(k)遞增,k∈(1,+∞)遞減,
且h(1)=1>0,h(2)=ln2>0,h(3)=ln3﹣1>0,h(4)=ln4﹣2<,0∴3<k<4
∴整數(shù)k的最大值是3
【解析】(1)由f′(x)=lnx+1,得f′(1)=1,由f(1)=0得切點(diǎn),即可得切線方程.(2)F(x)=lnx﹣ ,F(xiàn)′(x)= ,分①當(dāng)a≥0,②當(dāng)a∈(﹣1,0),③當(dāng)a∈[﹣e,﹣1],④當(dāng)a∈(﹣∞,﹣e) 求出F(x)的最小值,由最小值為 ,求解a.(3)令g(x)=f(x)+x﹣k(x﹣1)=xlnx+x﹣k(x﹣1)(x>1),分 ①當(dāng)k≤2,②當(dāng)k>2時(shí),求出g(x)的最小值,最小值大于0即可求解k的最大值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問題的答案,需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3﹣ax在(﹣∞,﹣1]上是單調(diào)函數(shù),則a的取值范圍是( )
A.(3,+∞)
B.[3,+∞)
C.(﹣∞,3)
D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)g(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x>0時(shí),xg(x)﹣f(x)<0,則使得f(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(0,1)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域[﹣1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示
x | ﹣1 | 0 | 2 | 4 | 5 |
F(x) | 1 | 2 | 1.5 | 2 | 1 |
下列關(guān)于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域?yàn)閇1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù)
③如果當(dāng)x∈[﹣1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)﹣a最多有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(n)=1+ + + +…+ ,g(n)= ﹣ ,n∈N* .
(1)當(dāng)n=1,2,3時(shí),試比較f(n)與g(n)的大小關(guān)系;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為 (a為常數(shù),n∈N*).
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{ }的前10項(xiàng)的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)進(jìn)行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計(jì)這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個(gè)隨機(jī)數(shù)為一組,代表3局比賽的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了30組隨機(jī)數(shù)
102 231 146 027 590 763 245 207 310 386 350 481 337 286 139
579 684 487 370 175 772 235 246 487 569 047 008 341 287 114
據(jù)此估計(jì),這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com