【題目】某健身館在20197、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶.為預(yù)估20207、8兩月客戶投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了201978兩月100名客戶的消費(fèi)金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:

1)若把20197、8兩月健身消費(fèi)金額不低于800元的客戶,稱為健身達(dá)人,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請(qǐng)補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為健身達(dá)人與性別有關(guān)?

健身達(dá)人

非健身達(dá)人

總計(jì)

10

30

總計(jì)

2)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營(yíng)養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.

方案一:每滿800元可立減100元;

方案二:金額超過(guò)800元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7.

若某人打算購(gòu)買1000元的營(yíng)養(yǎng)品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

3)在(2)中的方案二中,金額超過(guò)800元可抽獎(jiǎng)三次,假設(shè)三次中獎(jiǎng)結(jié)果互不影響,且三次中獎(jiǎng)的概率為,記為銳角的內(nèi)角,

求證:

附:

【答案】1)列聯(lián)表見解析,有的把握認(rèn)為健身達(dá)人與性別有關(guān)系;

2)所以選擇方案二更劃算;

3)見解析.

【解析】

1)先根據(jù)題目完善表格,再根據(jù)公式計(jì)算出,與比較大小即可得出答案;

2)若第一個(gè)方案,易得付款金額,第二個(gè)方案,設(shè)付款元,則可能取值為700,800900,1000,求出分布列,計(jì)算出的期望值,比較大小即可;

3)求出至少中一次的概率,通過(guò)可得答案.

1)列聯(lián)表如下:

健身達(dá)人

非健身達(dá)人

總計(jì)

10

40

50

20

30

50

總計(jì)

30

70

100

因?yàn)?/span>

因此有的把握認(rèn)為健身達(dá)人與性別有關(guān)系;

2)若選擇方案一:則需付款900元;

若選擇方案二:設(shè)付款元,則可能取值為700,800900,1000.

,

,

,

,

所以(元),

因?yàn)?/span>,所以選擇方案二更劃算;

3)∵是銳角三角形,

,則三次抽獎(jiǎng)機(jī)會(huì)中,該顧客至少中一次的概率為:

由概率的定義可知:,故有:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴(yán)重?fù)矶?/span>.晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)用分層抽樣的方法從交通指數(shù)在,的路段中共抽取個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(Ⅱ)從(Ⅰ)中抽出的個(gè)路段中任取個(gè),求至少有個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的右焦點(diǎn)到漸近線的距離為3.現(xiàn)有如下條件:①雙曲線的離心率為 ②雙曲線與橢圓共焦點(diǎn); ③雙曲線右支上的一點(diǎn)的距離之差是虛軸長(zhǎng)的.

請(qǐng)從上述3個(gè)條件中任選一個(gè),得到雙曲線的方程為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x對(duì)所有的b∈(-∞,0],x∈(e,e2]都成立,則實(shí)數(shù)a的取值范圍是(  )

A. [e,+∞)B. [,+∞)

C. [,e2)D. [e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿足,若在區(qū)間內(nèi)關(guān)于的方程恰有4個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上的一動(dòng)點(diǎn),點(diǎn),點(diǎn)在線段上,且滿足.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點(diǎn)分別為點(diǎn),斜率為的動(dòng)直線交曲線、兩點(diǎn),其中點(diǎn)在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.,則的逆命題為真命題

B.命題,的否定是,

C.,則的必要不充分條件

D.函數(shù)的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上頂點(diǎn)為,以為圓心橢圓的長(zhǎng)半軸為半徑的圓與軸的交點(diǎn)分別為,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)不經(jīng)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),且,試探究直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,已知拋物線y22pxp0)及點(diǎn)M20),動(dòng)直線l過(guò)點(diǎn)M交拋物線于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),AB4.

1)求p的值;

2)若lx軸不垂直,設(shè)線段AB中點(diǎn)為C,直線l1經(jīng)過(guò)點(diǎn)C且垂直于y軸,直線l2經(jīng)過(guò)點(diǎn)M且垂直于直線l,記l1l2相交于點(diǎn)P,求證:點(diǎn)P在定直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案