在△ABC中,已知a=
2
,b=
3
,∠B=60°,那么∠A等于( 。
A、30°B、45°
C、90°D、135°
考點:正弦定理
專題:計算題,解三角形
分析:由已知及正弦定理可解得:sinA=
2
2
,從而A=45°或135°,由a<b從而確定A=45°.
解答: 解:由正弦定理知:
a
sinA
=
b
sinB

∵a=
2
,b=
3
,∠B=60°,代入上式,
2
sinA
=
3
sin60°
,故可解得:sinA=
2
2
,從而A=45°或135°,
∵a<b
∴A<B
∴A=45°
故選:B.
點評:本題主要考查了正弦定理的應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(4x+1)-ax.
(1)若函數(shù)f(x)是R上的偶函數(shù),求實數(shù)a的值;
(2)若x∈(0,1],不等式f(x)≥log2(4x-1)+log2
a
4x
-ax恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(a2-1)x2-(a-1)x-1<0的解集為全體實數(shù),則實數(shù)a的取值范圍是( 。
A、-
3
5
<a<1
B、-
3
5
<a≤1
C、-
3
5
≤a≤1
D、a<-1或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(x+3)=-f(x),f(1)=-2,則f(2014)=( 。
A、0.5B、0C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)(-2≤x≤2)的圖象如圖所示,則該函數(shù)的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為D,若滿足:
①f(x)在D內(nèi)是單調(diào)函數(shù);
②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[-b,-a],那么y=f(x)叫做對稱函數(shù).
現(xiàn)有f(x)=
2-x
-k是對稱函數(shù),那么k的取值范圍是(  )
A、[2,
9
4
B、(-∞,
9
4
C、(2,
9
4
D、(-∞,
9
4
]
(-∞,
9
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是實數(shù),有下列兩個命題:
p:空間兩點A(-2,-2a,7)與B(a+1,a+4,2)的距離|
AB
|<3
10

q:拋物線y2=4x上的點M(
a2
4
,a)到其焦點F的距離|MF|>2.
已知“¬p”和“p∧q”都為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算sin137°cos13°-cos(-43°)cos77°的結(jié)果等于( 。
A、
1
2
B、
3
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=(3+4i)2(t是虛數(shù)單位),則z的虛部為
 

查看答案和解析>>

同步練習(xí)冊答案