分析 利用f(x)=$\left\{\begin{array}{l}x-a,x≤0\\ x+\frac{a}{x},x>0\end{array}$,f(-1)=-5,求出a,x>1時,f(x)=x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,當(dāng)且僅當(dāng)x=2時,取等號,即可求出f(x)在(1,+∞)上的最小值.
解答 解:∵f(x)=$\left\{\begin{array}{l}x-a,x≤0\\ x+\frac{a}{x},x>0\end{array}$,f(-1)=-5,
∴-1-a=-5,
∴a=4,
∴x>1時,f(x)=x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,當(dāng)且僅當(dāng)x=2時,取等號,
∴f(x)在(1,+∞)上的最小值為4,
故答案為:4.
點(diǎn)評 本題考查f(x)在(1,+∞)上的最小值,考查基本不等式的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AD}$ | B. | $\frac{1}{4}$ $\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$ | C. | $\frac{1}{3}$ $\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{DA}$ | D. | $\frac{1}{2}$ $\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1] | B. | (-1,1) | C. | ∅ | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com