4.已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2an+n,且bn=$\frac{{a}_{n}-1}{{a}_{n}{a}_{n+1}}$.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

分析 (1)利用an+1=Sn+1-Sn化簡(jiǎn)可知an+1=2an-1,變形可知an+1-1=2(an-1),進(jìn)而可知數(shù)列{an-1}是以-2為首項(xiàng)、2為公比的等比數(shù)列,計(jì)算即得結(jié)論;
(2)通過(guò)(1)裂項(xiàng)可知bn=$\frac{1}{{2}^{n+1}-1}$-$\frac{1}{{2}^{n}-1}$,并項(xiàng)相加即得結(jié)論.

解答 解:(1)解:由Sn=2an+n得:Sn+1=2an+1+n+1,
∴an+1=Sn+1-Sn=2an+1-2an+1,即an+1=2an-1,
∴an+1-1=2(an-1),
∵S1=2a1+1,
∴a1=-1,a1-1=-2≠0,
∴數(shù)列{an-1}是以-2為首項(xiàng)、2為公比的等比數(shù)列,
∴an-1=-2n,an=1-2n;
(2)由(1)知bn=$\frac{{a}_{n}-1}{{a}_{n}{a}_{n+1}}$=$\frac{1-{2}^{n}-1}{(1-{2}^{n})(1-{2}^{n+1})}$=$\frac{1}{{2}^{n+1}-1}$-$\frac{1}{{2}^{n}-1}$,
∴Tn=-[($\frac{1}{2-1}$-$\frac{1}{{2}^{2}-1}$)+($\frac{1}{{2}^{2}-1}$-$\frac{1}{{2}^{3}-1}$)+…+($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$)]
=$\frac{1}{{2}^{n+1}-1}$-1.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,考查裂項(xiàng)相消法,對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)在R上是增函數(shù),則( 。
A.f(-1)<f(0)<f(2)B.f(2)<f(0)<f(-1)C.f(0)<f(-1)<f(2)D.f(2)<f(-1)<f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}中,a1=3,a2=6,an+2=2an+1-an,則a2011=6033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.紅、藍(lán)兩色車(chē)、馬、炮棋子各一枚,將這6枚棋子排成一列,記事件:每對(duì)同字的棋子中,均為紅棋子在前,藍(lán)棋子在后為事件A,則事件A發(fā)生的概率為(  )
A.$\frac{1}{20}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若某幾何體的三視圖如圖所示,則此幾何體的體積等于( 。
A.$\frac{75}{2}$B.30C.75D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知一元二次方程x2-(2m-1)x+m2-m=0的兩根均大于0且小于2,則m的取值范圍為1<m<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知b=2,B=$\frac{π}{6}$,C=$\frac{π}{4}$,求:(1)c,a的值(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若x1,x2,x3,…,x2013的方差為3,則3x1,3x2,3x3,…,3x2013的方差為(  )
A.3B.9C.18D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.下列命題中正確的是②③.(寫(xiě)出所有正確命題的序號(hào))
①存在α滿足sinα+cosα=2;       
②y=cos($\frac{7π}{2}$-3x)是奇函數(shù);
③y=4sin(2x+$\frac{5π}{4}$)的一個(gè)對(duì)稱中心是(-$\frac{9π}{8}$,0);
④y=sin(2x-$\frac{π}{4}$)的圖象可由y=sin 2x的圖象向右平移$\frac{π}{4}$個(gè)單位得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案