分析 (1)利用數(shù)列遞推關(guān)系、等比數(shù)列的通項公式即可得出.
(2)由(1)知${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,利用裂項求和方法即可得出.
解答 解:(1)由已知${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$①,
得${S_{n-1}}=\frac{3}{2}{a_{n-1}}-\frac{1}{2}$,(n≥2)②,
①-②得${a_n}=\frac{3}{2}{a_n}-\frac{3}{2}{a_{n-1}}$,即an=3an-1(n≥2),
又a1=1,所以數(shù)列{an}是以1為首項,3為公比的等比數(shù)列,即${a_n}={3^{n-1}}$.
(2)由(1)知${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}=\frac{n}{n+1}$,
∴${T_n}=\frac{n}{n+1}$.
點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 15 | C. | 20 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①④ | B. | ②④ | C. | ①③④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
點擊量 | [0,1000] | (1000,3000] | (3000,+∞) |
節(jié)數(shù) | 6 | 18 | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com