16.數(shù)列{an}的前n項和為Sn,且滿足${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$,a1=1.
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{1}{{{{log}_3}{a_{n+1}}•{{log}_3}{a_{n+2}}}}$,求數(shù)列{bn}的前n項和Tn

分析 (1)利用數(shù)列遞推關(guān)系、等比數(shù)列的通項公式即可得出.
(2)由(1)知${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,利用裂項求和方法即可得出.

解答 解:(1)由已知${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$①,
得${S_{n-1}}=\frac{3}{2}{a_{n-1}}-\frac{1}{2}$,(n≥2)②,
①-②得${a_n}=\frac{3}{2}{a_n}-\frac{3}{2}{a_{n-1}}$,即an=3an-1(n≥2),
又a1=1,所以數(shù)列{an}是以1為首項,3為公比的等比數(shù)列,即${a_n}={3^{n-1}}$.
(2)由(1)知${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}=\frac{n}{n+1}$,
∴${T_n}=\frac{n}{n+1}$.

點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=$\frac{1}{3}$c,D是AC的中點,且cosB=$\frac{2\sqrt{5}}{5}$,BD=$\sqrt{26}$.
(1)求角A的大;
(2)求△ABC的最短邊的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四棱錐P-ABCD中,平面PAC⊥底面ABCD,BC=CD=$\frac{1}{2}$AC=2,∠ACB=∠ACD=$\frac{π}{3}$.
(1)證明:AP⊥BD;
(2)若AP=$\sqrt{5}$,AP與BC所成角的余弦值為$\frac{{\sqrt{5}}}{5}$,求二面角A-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.執(zhí)行如下程序框圖,則輸出的n=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.拋擲甲、乙兩枚質(zhì)地均勻且四面上分別標有1,2,3,4的正四面體,其底面落于桌面,記所得的數(shù)字分別為x,y,則$\frac{x}{y}$為整數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知正項等比數(shù)列{an}的前n項和為Sn,且S8-2S4=5,則a9+a10+a11+a12的最小值為( 。
A.10B.15C.20D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=-x3+12x+m.
(1)若x∈R,求函數(shù)f(x)的極大值與極小值之差;
(2)若函數(shù)y=f(x)有三個零點,求m的取值范圍;
(3)當x∈[-1,3]時,f(x)的最小值為-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列四個說法:
①“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充分不必要條件;
②命題“設(shè)a,b∈R,若a+b≠6,則a≠3或b≠3”是一個假命題;
③命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∈R都有x2+x+1≥0
④一個命題的否命題為真,則它的逆命題一定為真
其中正確的是(  )
A.①④B.②④C.①③④D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.長春市的“名師云課”活動自開展以來獲得廣大家長和學子的高度贊譽,在我市推出的第二季名師云課中,數(shù)學學科共計推出36節(jié)云課,為了更好地將課程內(nèi)容呈現(xiàn)給廣大學子,現(xiàn)對某一時段云課的點擊量進行統(tǒng)計:
點擊量[0,1000](1000,3000](3000,+∞)
節(jié)數(shù)61812
(Ⅰ)現(xiàn)從36節(jié)云課中采用分層抽樣的方式選出6節(jié),求選出的點擊量超過3000的節(jié)數(shù).
(Ⅱ)為了更好地搭建云課平臺,現(xiàn)將云課進行剪輯,若點擊量在區(qū)間[0,1000]內(nèi),則需要花費40分鐘進行剪輯,若點擊量在區(qū)間(1000,3000]內(nèi),則需要花費20分鐘進行剪輯,點擊量超過3000,則不需要剪輯,現(xiàn)從(Ⅰ)中選出的6節(jié)課中任意取出2節(jié)課進行剪輯,求剪輯時間為40分鐘的概率.

查看答案和解析>>

同步練習冊答案