某化工企業(yè)2010年底投入100萬元,購入一套污水處理設(shè)備.該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設(shè)備老化,以后每年的維護費都比上一年增加2萬元.
(Ⅰ)求該企業(yè)使用該設(shè)備x年的年平均污水處理費用y(萬元);
(Ⅱ)問為使該企業(yè)的年平均污水處理費用最低,該企業(yè)幾年后需要重新更換新的污水處理設(shè)備?

解:(1)………………………4分
);………………………6分
(2)由均值不等式得:
(萬元)………………………9分
當(dāng)且僅當(dāng),即時取到等號.………………………11分
答:該企業(yè)10年后需要重新更換新設(shè)備

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
⑴若的定義域和值域均是,求實數(shù)的值;
⑵若上是減函數(shù),且對任意的,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng),且時,求證: 
(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某新型智能在線電池的電量(單位:kwh)隨時間(單位:小時)的變化規(guī)律是:,其中是智能芯片實時控制的參數(shù)。
(1)當(dāng)時,求經(jīng)過多少時間電池電量是 kwh;
(2)如果電池的電量始終不低于2 kwh,求參數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)(1)計算的值.
(2)計算的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若定義在上的函數(shù)滿足條件:存在實數(shù),使得:
⑴ 任取,有是常數(shù));
⑵ 對于內(nèi)任意,當(dāng),總有。
我們將滿足上述兩條件的函數(shù)稱為“平頂型”函數(shù),稱為“平頂高度”,稱為“平頂寬度”。根據(jù)上述定義,解決下列問題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對于(2)中的函數(shù),若上有兩個不相等的根,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(15分)已知:二次函數(shù).
(1)求的解析式;
(2)若有一個正的零點,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
在一個月內(nèi)分批購入每張價值為20元的書桌共36臺,每批都購入x臺(x是正整數(shù)),且每批均需付運費4元,儲存購入的書桌一個月所付的保管費與每批購入書桌的總價值(不含運費)成正比,若每批購入4臺,則該月需用去運費和保管費共52元,現(xiàn)在全月只有48元資金可以用于支付運費和保管費.
(1)求該月需用去的運費和保管費的總費用
(2)能否恰當(dāng)?shù)匕才琶颗M貨的數(shù)量,使資金夠用?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案