(15分)已知:二次函數(shù).
(1)求的解析式;
(2)若有一個正的零點,求實數(shù)的取值范圍。
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)建造一個容積為,深為的長方體無蓋水池,如果池底和池壁的造價分別為每平方米120元和80元,那么水池的最低總造價是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù),設函數(shù),
(1)若,且函數(shù)的值域為,求的表達式.
(2)若在上是單調函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x+2ax+2, x.
(1)當a=-1時,求函數(shù)的最大值和最小值;
(2) 若y=f(x)在區(qū)間 上是單調 函數(shù),求實數(shù) a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時間僅能持續(xù)5個月,預測上市初期和后期會因供應不足使價格呈持續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌.現(xiàn)有三種價格模擬函數(shù):①;②;③.(以上三式中、均為常數(shù),且)
(I)為準確研究其價格走勢,應選哪種價格模擬函數(shù)(不必說明理由)
(II)若,,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類推);
(III)在(II)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟效益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內(nèi)價格下跌.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某化工企業(yè)2010年底投入100萬元,購入一套污水處理設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.
(Ⅰ)求該企業(yè)使用該設備x年的年平均污水處理費用y(萬元);
(Ⅱ)問為使該企業(yè)的年平均污水處理費用最低,該企業(yè)幾年后需要重新更換新的污水處理設備?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P和Q(萬元),它們與投入資金x(萬元)的關系有經(jīng)驗公式:P=x,Q=.今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少,能獲得的最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com