10.已知數(shù)列{an}滿足a1=1,a2=2,${a_{n+2}}=(1+{sin^2}\frac{nπ}{2}){a_n}+n•cos\frac{nπ}{2}$,則該數(shù)列的前20項(xiàng)和為1033.

分析 求出數(shù)列的關(guān)系式,利用奇數(shù)項(xiàng)與偶數(shù)項(xiàng)的和,求解即可.

解答 解:當(dāng)n為奇數(shù)時(shí),${a_{n+2}}=(1+{sin^2}\frac{nπ}{2}){a_n}+n•cos\frac{nπ}{2}$,可得an+2=2an
故奇數(shù)項(xiàng)是以a1=1為首項(xiàng),公比為2的等比數(shù)列,
所以前20項(xiàng)中的奇數(shù)項(xiàng)和為${S_奇}=\frac{{1-{2^{10}}}}{1-2}={2^{10}}-1=1023$;
當(dāng)n為偶數(shù)時(shí),${a_{n+2}}=(1+{sin^2}\frac{nπ}{2}){a_n}+n•cos\frac{nπ}{2}$,可得${a_{n+2}}={a_n}+{(-1)^{\frac{n}{2}}}•n$,
前20項(xiàng)中的偶數(shù)項(xiàng)和為S=10,
所以S20=1023+10=1033.
故答案為:1033.

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列求和,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+lnx
(1)求y=-f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=ax-f(x)存在極值,且所有極值之和大于5-ln$\frac{1}{2}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為$\frac{π}{3}$,則$|{\overrightarrow a+\overrightarrow b}|$等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若角2α的終邊在y軸的非負(fù)半軸上,則角α的終邊位于第一、三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在R上的函數(shù),圖象關(guān)于y軸對(duì)稱,且在x∈[0,+∞)單調(diào)遞增.f(-2)=1,那么f(x)≤1的
解集是( 。
A.[-2,2]B.(-1,2)C.[-1,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=x2+a2+|x+a|
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)的最小值大于3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合U=R,集合A={x|2x>1},集合B={x|logx2>0},則A∩(∁UB)等于( 。
A.{x|x>1}B.{x|0<x<1}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{2}$與平面2X+Y+Z=0的交點(diǎn)為(-0.2,0.8,-0.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,向量$\overrightarrow m=({\frac{a}{2},\frac{c}{2}}),\overrightarrow n=({cosC,cosA})$,且$\overrightarrow n•\overrightarrow m=bcosB$.
(1)求B的值;
(2)若$cos\frac{A-C}{2}=\sqrt{3}sinA$,且$|{\overrightarrow m}|=\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案