分析 (Ⅰ)由已知根據(jù)正弦定理得:$\sqrt{3}$cosA=sinA,根據(jù)同角三角函數(shù)基本關(guān)系式可求tanA=$\sqrt{3}$,結(jié)合范圍A∈(0,π),利用特殊角的三角函數(shù)值即可得解A的值.
(Ⅱ)由已知及三角形面積公式可求c,根據(jù)余弦定理可得a的值,利用正弦定理即可得解.
解答 (本題滿分為12分)
解:(Ⅰ)由題意得:$\frac{a}{\sqrt{3}cosA}$=$\frac{c}{sinC}$,根據(jù)正弦定理得:$\sqrt{3}$cosA=sinA,
∴tanA=$\sqrt{3}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$,…(4分)
(Ⅱ)由S=5$\sqrt{3}$=$\frac{1}{2}$bcsinA,得:c=4,…(6分)
根據(jù)余弦定理得:a2=42+52-2×$5×4×\frac{1}{2}$,解得:a=$\sqrt{21}$.….…(8分)
由于2R=$\frac{a}{sinA}$=2$\sqrt{7}$,…(10分)
由正弦定理得sinBsinC=$\frac{bc}{4{R}^{2}}$=$\frac{5×4}{28}$=$\frac{5}{7}$. ….(12分)
點(diǎn)評(píng) 本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,特殊角的三角函數(shù)值,三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆江蘇南通市如東縣等高三10月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題
定義在上的可導(dǎo)函數(shù),已知的圖象如圖所示,則的增區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生學(xué)科 | A | B | C | D | E |
數(shù)學(xué)成績(jī)(x) | 88 | 76 | 73 | 66 | 63 |
化學(xué)成績(jī)(y) | 78 | 65 | 71 | 64 | 61 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | t≤-3或t≥-1 | B. | -3≤t≤-1 | C. | t≤1或t≥3 | D. | 1≤t≤3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>b>a | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{{\sqrt{3}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線 | B. | 雙曲線的一支 | C. | 橢圓 | D. | 拋物線 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com