11.在△ABC 中,a2=b2+c2+bc,則A等于( 。
A.60°B.120°C.30°D.150°

分析 先根據(jù)a2=b2+bc+c2,求得bc=-(b2+c2-a2)代入余弦定理中可求得cosA,進(jìn)而得解.

解答 解:根據(jù)余弦定理可知cosA=$\frac{{c}^{2}+^{2}-{a}^{2}}{2bc}$
∵a2=b2+bc+c2,
∴bc=-(b2+c2-a2),
∴cosA=-$\frac{1}{2}$
∴A=120°.
故選:B.

點(diǎn)評 本題主要考查了余弦定理的應(yīng)用.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.當(dāng)正整數(shù)集合A滿足:“若x∈A,則10-x∈A”.則集合A中元素個(gè)數(shù)至多有(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x2+x-6<0},B={y|y=2x-1,x≤2},則A∩B=(  )
A.(-3,3]B.(-1,3)C.(-3,2]D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x+φ)關(guān)于直線x=$\frac{π}{3}$對稱,求|φ|的最小值;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),若方程|f(x)|-m=0有4個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow m=({sinA,cosA}),\overrightarrow n=(\sqrt{3},1),\overrightarrow m•\overrightarrow n=\sqrt{3}$,且A是銳角.
(1)求角A的大小;
(2)求函數(shù)f(x)=cos2x+4sinAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)點(diǎn)A(-1,2),B(2,3),C(3,-1),且$\overrightarrow{AD}=2\overrightarrow{AB}-3\overrightarrow{BC}$則點(diǎn)D的坐標(biāo)為( 。
A..(2,16)B..(-2,-16)C..(4,16)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線xcosα+ysinα-1=0與圓(x-1)2+(y-sinα)2=$\frac{1}{16}$相切,α為銳角,則斜率k=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是( 。
A.(0,3)B.(1,4)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在△ABC中,D為AB的中點(diǎn),E為CD的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,以向量$\overrightarrow{a}$,$\overrightarrow$為基底,則向量$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$D.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊答案