設(shè)α、β、γ是三個(gè)不重合的平面,l是直線,給出下列命題
①若α⊥β,β⊥γ,則α⊥γ;②若l上兩點(diǎn)到α的距離相等,則l∥α;③若l⊥α,l∥β,則α⊥β;④若α∥β,l⊄β,且l∥α,則l∥β.
其中正確的命題是( )
A.①② B.②③
C.②④ D.③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,在△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓分別與BC、AB相切于點(diǎn)C、M,與AC交于點(diǎn)N),則圖中陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為_(kāi)_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
空間中一條線段AB的三視圖中,俯視圖是長(zhǎng)度為1的線段,側(cè)視圖是長(zhǎng)度為2的線段,則線段AB的長(zhǎng)度的取值范圍是( )
A.(0,2] B.[2,]
C.[2,3] D.[2,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H為BC的中點(diǎn).
(1)求證:FH∥平面EDB;
(2)求證:AC⊥平面EDB;
(3)求四面體B-DEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,多面體ABC-A1B1C1中,三角形ABC是邊長(zhǎng)為4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
(1)若O是AB的中點(diǎn),求證:OC1⊥A1B1;
(2)在線段AB1上是否存在一點(diǎn)D,使得CD∥平面A1B1C1?若存在,確定點(diǎn)D的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)a、b為兩條直線,α、β為兩個(gè)平面,下列四個(gè)命題中真命題是( )
A.若a、b與α所成角相等,則a∥b
B.若a∥α,b∥β,α⊥β,則a⊥b
C.若a⊂α,b⊂β,a⊥b,則α⊥β
D.若a⊥α,b⊥β,α⊥β,則a⊥b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點(diǎn).
(1)求證:BM∥平面ADEF;
(2)求證:平面BDE⊥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)下圖是某幾何體的三視圖,則該幾何體的體積為( )
A.π+12 B.π+18
C.9π+42 D.36π+18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)l為直線,α,β是兩個(gè)不同的平面.下列命題中正確的是( )
A.若l∥α,l∥β,則α∥β
B.若l⊥α,l⊥β,則α∥β
C.若b⊥α,l∥β,則α∥β
D.若α⊥β,l∥α,則l⊥β
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com