【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

【答案】
(1)

當(dāng)0<a<時(shí),g(x)在區(qū)間(0, ), (,+)上單調(diào)遞增, 在區(qū)間(, )上單調(diào)遞減;當(dāng)a≥時(shí),在區(qū)間(0,+)上單調(diào)遞增.


(2)

詳見(jiàn)解析.


【解析】(1)由已知, 函數(shù)f(x)的定義域?yàn)椋?,+), g(x)=f'(x)=2x-2a-2lnx-2(1+), 所以 g'(x)=2-+=, 當(dāng)0<a<時(shí),g(x)在區(qū)間(0, ), (,+)上單調(diào)遞增, 在區(qū)間(, )上單調(diào)遞減;當(dāng)a≥時(shí),在區(qū)間(0,+)上單調(diào)遞增. (2)由f'(x)=2x-2a-2lnx-2(1+)=0, 解得a=, 令(x)=-2(x+)lnx+x2-2()x-2()2+, 則(1)=1>0, (e)=--2<0, 故存在x0(1,e), 使得(x0)=0, 令a0=, u(x)=x-1-lnx(x≥1), 由u'(x)=1-≥0知, 函數(shù)u(x)在區(qū)間(1, +)上單調(diào)遞增。所以0=, 即a(0,1), 當(dāng)a=a0時(shí), 有f'(x0)=0, f(x0)= (x0)=0, 由(1)知, 函數(shù)f'(x)在區(qū)間(1,+)上單調(diào)遞增., 故當(dāng)x(1,x0)時(shí), 有f'(x0)<0, 從而f(x)> f(x0)=0, 當(dāng)x(x0, +)時(shí), 有f'(x0)>0, 從而f(x)> f(x0)=0, 所以, 當(dāng)x(1,+)時(shí), f(x)≥0。 綜上所述,存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.
本題考查導(dǎo)數(shù)的運(yùn)算、導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用、函數(shù)的零點(diǎn)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、創(chuàng)新意識(shí),考查函數(shù)與方程、數(shù)形結(jié)合、分類與 整合,化歸與轉(zhuǎn)化等數(shù)學(xué)思想.本題作為壓軸題,難度系數(shù)應(yīng)在0.3以下.導(dǎo)數(shù)與微積分作為大學(xué)重要內(nèi)容,在中學(xué)要求學(xué)生掌握其基礎(chǔ)知識(shí),在高考題中也必有 體現(xiàn).一般地,只要掌握了課本知識(shí),是完全可以解決第(1)題的,所以對(duì)難度最大的最后一個(gè)題,任何人都不能完全放棄,這里還有不少的分是志在必得的.解 決函數(shù)題需要的一個(gè)重要數(shù)學(xué)思想是數(shù)形結(jié)合,聯(lián)系圖形大膽猜想. 在本題中,結(jié)合待證結(jié)論,可以想象出f(x)的大致圖象,要使得f(x)≥0在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解,則這個(gè)解x0應(yīng)為極小值點(diǎn),且極小值為0,當(dāng)x(1,x0)時(shí),f(x)的圖象遞減; 當(dāng)x(1,+)時(shí),f(x)的圖象單調(diào)遞增,順著這個(gè)思想,便可找到解決方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,上的一點(diǎn),,且.

(1)求證:平面

(2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校團(tuán)委組織了文明出行,愛(ài)我中華的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,.

1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全此頻率分布直方圖;

2)求這次考試平均分的估計(jì)值;

3)若從成績(jī)?cè)?/span>的學(xué)生中任選兩人,求他們的成績(jī)?cè)谕环纸M區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為偶函數(shù),當(dāng)時(shí), , 滿足的實(shí)數(shù)的個(gè)數(shù)為( )

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出了一個(gè)問(wèn)題的算法:

第一步,輸入x.

第二步,若x≥4,則執(zhí)行第三步,否則執(zhí)行第四步.

第三步,y=2x-1,輸出y.

第四步,yx2-2x+3,輸出y.

問(wèn)題:(1)這個(gè)算法解決的問(wèn)題是什么?

(2)當(dāng)輸入的x值為多大時(shí),輸出的數(shù)值最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,

(1)若方程C表示圓,求實(shí)數(shù)m的范圍;

(2)在方程表示圓時(shí),該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn),且|MN|=,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】調(diào)查在3級(jí)風(fēng)的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船

(1)作出性別與暈船關(guān)系的列聯(lián)表;

(2)根據(jù)此資料,能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為3級(jí)風(fēng)的海上航行中暈船與性別有關(guān)?

暈船

不暈船

總計(jì)

男人

女人

總計(jì)

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
(1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
(2)若f(x)>0在(0,+∞)對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然對(duì)數(shù)的底數(shù).(13分)
(Ⅰ)求曲線y=f(x)在點(diǎn)(π,f(π))處的切線方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),討論h(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案