【題目】定義:曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數(shù)a=

【答案】
【解析】解:圓x2+(y+4)2=2的圓心為(0,﹣4),半徑為 ,
圓心到直線y=x的距離為 =2
∴曲線C2:x2+(y+4)2=2到直線l:y=x的距離為2 =
則曲線C1:y=x2+a到直線l:y=x的距離等于 ,
令y′=2x=1解得x= ,故切點為( +a),
切線方程為y﹣( +a)=x﹣ 即x﹣y﹣ +a=0,
由題意可知x﹣y﹣ +a=0與直線y=x的距離為
解得a= 或﹣
當a=﹣ 時直線y=x與曲線C1:y=x2+a相交,故不符合題意,舍去.
所以答案是:
【考點精析】解答此題的關(guān)鍵在于理解點到直線的距離公式的相關(guān)知識,掌握點到直線的距離為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近日,某地普降暴雨,當?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當發(fā)現(xiàn)時已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟損失約為元,且滲水面積以每天的速度擴散.當?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務(wù)費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.

寫出關(guān)于的函數(shù)關(guān)系式;

應(yīng)安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項支出費用)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅是南北朝時代的偉大科學家,公元五世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積恒相等,那么這兩個幾何體的體積一定相等.設(shè)A,B為兩個同高的幾何體,A,B的體積不相等,A,B在等高處的截面積不恒相等.根據(jù)祖暅原理可知,pq的( 。

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

極坐標系與直角坐標系有相同的長度單位,以原點為極點,以軸正半軸為極軸.曲線的極坐標方程為,已知傾斜角為的直線經(jīng)過點

(1)寫出直線的參數(shù)方程;曲線的直角坐標方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足.當時,,當時,,則f(1)+f(2)+…+f(2015)=( )

A. 333 B. 336 C. 1678 D. 2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ.

(1)求圓C的直角坐標方程;

(2)設(shè)圓C與直線l交于點A、B,若點P的坐標為(3,),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l,半徑為4的圓C與直線l相切,圓心Cx軸上且在直線l的右上方.

Ⅰ)求圓C的方程;

Ⅱ)過點M (2,0)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為元,若該項目不獲利,政府將給予補貼.

1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

同步練習冊答案