4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,A,B分別為橢圓上頂點(diǎn)和右頂點(diǎn),若AB+BF=2a,則橢圓離心率是$\frac{\sqrt{3}-1}{2}$.

分析 求得A,B,F(xiàn)的坐標(biāo),運(yùn)用兩點(diǎn)的距離公式,可得$\sqrt{{a}^{2}+^{2}}$+(a-c)=2a,再由a,b,c及離心率公式,解方程即可得到所求值.

解答 解:由題意可得A(0,a),B(b,0),F(xiàn)(c,0),
由AB+BF=2a,可得$\sqrt{{a}^{2}+^{2}}$+(a-c)=2a,
即有a2+b2=(a+c)2,由b2=a2-c2
代入化簡(jiǎn)可得,2c2+2ac-a2=0,
由e=$\frac{c}{a}$,可得2e2+2e-1=0,
解得e=$\frac{\sqrt{3}-1}{2}$(負(fù)的舍去).
故答案為:$\frac{\sqrt{3}-1}{2}$.

點(diǎn)評(píng) 本題考查橢圓的離心率的求法,注意運(yùn)用橢圓的基本量的關(guān)系和離心率公式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(x6,y6)的散點(diǎn)圖中,若所有樣本點(diǎn)(xi,yi)(i=1,2,…,6)都在曲線y=bx2-$\frac{1}{3}$附近波動(dòng).經(jīng)計(jì)算$\sum_{i=1}^{6}$xi=11,$\sum_{i=1}^{6}$yi=13,$\sum_{i=1}^{6}$xi2=21,則實(shí)數(shù)b的值為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,且過(guò)點(diǎn)(2,$\sqrt{2}$).又M,N,P,Q是橢圓C上的四個(gè)不同的點(diǎn),兩條都不和x軸垂直的直線MN和PQ分別過(guò)點(diǎn)F1,F(xiàn)2,且這兩條直線互相垂直,則$\frac{1}{{|{MN}|}}+\frac{1}{{|{PQ}|}}$為定值( 。
A.$\frac{{3\sqrt{2}}}{8}$B.$\frac{{5\sqrt{2}}}{8}$C.$\frac{{7\sqrt{2}}}{8}$D.$\frac{{\sqrt{2}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C與橢圓E:$\frac{x^2}{7}+\frac{y^2}{5}=1$共焦點(diǎn),并且經(jīng)過(guò)點(diǎn)$A(1,\frac{{\sqrt{6}}}{2})$,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在橢圓C上任取兩點(diǎn)P、Q,設(shè)PQ所在直線與x軸交于點(diǎn)M(m,0),點(diǎn)P1為點(diǎn)P關(guān)于軸x的對(duì)稱點(diǎn),QP1所在直線與x軸交于點(diǎn)N(n,0),探求mn是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b≥1)的離心率e=$\frac{\sqrt{3}}{2}$,且橢圓C1上一點(diǎn)M到點(diǎn)Q(0,3)的距離的最大值為4.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)A(0,$\frac{1}{16}$),N為拋物線C2:y=x2上一動(dòng)點(diǎn),過(guò)點(diǎn)N作拋物線C2的切線交橢圓C1于B,C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且短軸長(zhǎng)為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為1的直線l,使得l與曲線C相交于A,B兩點(diǎn),且以AB為直角的圓恰好經(jīng)過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若橢圓的離心率為$\frac{1}{2}$,短軸長(zhǎng)為2$\sqrt{3}$,焦點(diǎn)在x軸上,則橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{9}=1$C.$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{3}=1$D.$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在如圖所示的幾何體EFABC中,已知△ABC是等腰三角形,AB=AC,AF⊥平面ABC,D為BC的中點(diǎn),DE∥AF且BC=AF=2DE=2.
(1)求證:AB∥平面EFC;
(2)若∠BAC=120°,求二面角B-EF-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.$\frac{2}{1+i}-\frac{1+i}{2}$=( 。
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

同步練習(xí)冊(cè)答案