已知圓C:x2+(y-1)2=16(圓心為C點(diǎn))及點(diǎn)A(0,-1),Q為圓上一點(diǎn),AQ的垂直平分線交CQ于M,則點(diǎn)M的軌跡方程是
 
考點(diǎn):軌跡方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)線段中垂線的性質(zhì)可得,|MA|=|MQ|,又|MQ|+|MC|=半徑4,故有|MC|+|MA|=4>|AC|,根據(jù)橢圓的定義判斷軌跡橢圓,求出a、b值,即得橢圓的標(biāo)準(zhǔn)方程.
解答: 解:由圓的方程可知,圓心C(0,1),半徑等于4,
設(shè)點(diǎn)M的坐標(biāo)為(x,y ),則
∵AQ的垂直平分線交CQ于M,
∴|MA|=|MQ|.
又|MQ|+|MC|=半徑4,
∴|MC|+|MA|=4>|AC|.
依據(jù)橢圓的定義可得,
點(diǎn)M的軌跡是以 A、C 為焦點(diǎn)的橢圓,且2a=4,c=1,∴b=
3
,
故橢圓方程為
y2
4
+
x2
3
=1

故答案為:
y2
4
+
x2
3
=1
點(diǎn)評:本題考查橢圓的定義、橢圓的標(biāo)準(zhǔn)方程,得出|MC|+|MA|=4>|AC|,是解題的關(guān)鍵和難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014年5月31日,江西宜春的高三考生柳艷兵與易征勇在客運(yùn)班車上與持刀歹徒英勇搏斗的事跡.事后不久,江西某市迅速在全市高中開展了“向柳艷兵與易征勇同學(xué)學(xué)習(xí)”的宣傳活動(dòng),該市某高中就這一宣傳活動(dòng)在該校師生中抽取了120人進(jìn)行問卷調(diào)查,調(diào)查結(jié)果如下:
 所持態(tài)度 很有必要 有必要 意義不大
 人數(shù)(單位:人) 60 40 20
(1)若從這120人中按照分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再從這6人中隨機(jī)抽取3人作進(jìn)一步調(diào)查,求這3人中至少有1人態(tài)度為“很有必要”的概率;
(2)現(xiàn)從(1)所抽取的6人的問卷中每次抽取1份,且不重復(fù)抽取,直至確定出所有態(tài)度為“很有必要”的問卷為止,記所要抽取的次數(shù)為X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中an+1-2an=0,若a3+2是a2,a4的等差中項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足bn=2nlog
1
2
an,則使Sn+n•2n+1=50成立的正整數(shù)n等于( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是圓x2+y2=4上的任意一點(diǎn),點(diǎn)M、N依次為點(diǎn)P在x軸、y軸上的投影,若
OQ
=
3
2
OM
+
1
2
ON
,點(diǎn)Q的軌跡未曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)P作都有斜率的直線l1、l2,使得l1、l2與曲線C都只有一個(gè)公共點(diǎn),試判斷l(xiāng)1、l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為1的球面上,球心O在AB上,SO⊥面ABC,AC=
2
,則該三棱錐的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=
9
1
n
-9-
1
n
2
,n∈N*,求(x-
1+x2
n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<α<
π
2
,
π
2
<β<π
,且cosα=
3
5
,tan(α-β)=-1,求cosβ+tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p、q∈R+且滿足log9p=log12q=log16(p+q),求
q
p
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為奇函數(shù)且在(-∞,0)內(nèi)是增函數(shù),f(-2)=0,則xf(x)>0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案