6.擲三枚硬幣,至少出現(xiàn)兩個正面的概率為$\frac{1}{2}$.

分析 擲三枚硬幣,利用列舉法求出基本事件,由此能求出至少出現(xiàn)兩個正面的概率.

解答 解:擲三枚硬幣,
基本事件總數(shù)為:{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},{反反反},
∴至少出現(xiàn)兩個正面的概率:p=$\frac{4}{8}$=$\frac{1}{2}$.
故答案:$\frac{1}{2}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列出舉的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=cosx-2x-2-x-b(b∈R).
①當b=0時,函數(shù)f(x)的零點個數(shù)0;
②若函數(shù)f(x)有兩個不同的零點,則b的取值范圍(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若O、A、B、C為空間四點,且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不能構(gòu)成空間的一個基底,則( 。
A.$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共線B.$\overrightarrow{OA}$,$\overrightarrow{OB}$共線C.$\overrightarrow{OB}$,$\overrightarrow{OC}$共線D.O,A,B,C四點共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|1≤x<5},B={x|x2-2x-15≤0},C={x|-a<x≤a+3}.
(I)求A∩B;
(Ⅱ)若C∩A=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.現(xiàn)有60位學(xué)生,編號為1至60,若從中抽取6人,則用系統(tǒng)抽樣確定所抽的編號為( 。
A.2,14,26,38,42,56B.5,8,31,36,48,54
C.3,13,23,33,43,53D.5,10,15,20,25,30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知不等式ex≥1+ax對一切x∈R恒成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正三角形ABC的邊長為4,將它沿高AD翻折,使點B與點C間的距離為2,則四面體ABCD外接球表面積為( 。
A.16πB.$\frac{32π}{3}$C.$\frac{52π}{3}$D.$\frac{13π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動圓在圓C1內(nèi)部且和圓C1相內(nèi)切,和圓C2相外切,則動圓圓心M的軌跡方程為( 。
A.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{48}$=1B.$\frac{{x}^{2}}{48}$+$\frac{{x}^{2}}{64}$=1C.$\frac{{x}^{2}}{48}$-$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,橢圓x2+2y2=1的右焦點為F,直線l不經(jīng)過焦點,與橢圓相交于點A,B,與y軸的交點為C,則△BCF與△ACF的面積之比是( 。
A.|$\frac{|BF|-1}{|AF|-1}$|B.|$\frac{|BF{|}^{2}-1}{|AF{|}^{2}-1}$|C.$\frac{|BF|+1}{|AF|+1}$D.$\frac{|BF{|}^{2}+1}{|AF{|}^{2}+1}$

查看答案和解析>>

同步練習(xí)冊答案