分析 (I)利用等比數(shù)列與等差數(shù)列的通項公式即可得出;
(II)利用“裂項求和”方法與數(shù)列的單調(diào)性即可證明.
解答 解:(Ⅰ)由已知得 $\frac{{a}_{n+1}}{{a}_{n}}$=2,
∴數(shù)列{an}是以為1首項,2為公比的等比數(shù)列.
∴an=2n-1.
設(shè)等差數(shù)列{bn}的公差為d,
∵b1=a1=1,b4=S3=1+2+22=7,
∴7=1+3d,解得d=2.
∴bn=1+2(n-1)=2n-1.
(Ⅱ)證明:由(Ⅰ)得設(shè)cn=$\frac{1}{{{b_n}•{b_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$,
∵數(shù)列$\{-\frac{1}{2n+1}\}$單調(diào)遞增,
∴$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
點評 本題考查了遞推關(guān)系、“裂項求和”、等差數(shù)列與等比數(shù)列的通項公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2015 | B. | 2013 | C. | 2014 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com