考點(diǎn):數(shù)列的求和,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(I)由于n>1時(shí),3tS
n-(2t+3)S
n-1=3t(t>0)恒成立,3tS
n+1-(2t+3)S
n=3t(t>0).兩式相減可得:
=
為不等式0的常數(shù),即可證明數(shù)列{a
n}是等比數(shù)列;
(II)由(I)可得f(t)=
=
+,b
n=f(
)=
+bn-1,可得數(shù)列{b
n}是等差數(shù)列.
(III)由于b
2n=
,b
2n-1-b
2n+1=
-.利用等差數(shù)列的前n項(xiàng)和公式即可得出.
解答:
(I)證明:∵n>1時(shí),3tS
n-(2t+3)S
n-1=3t(t>0)恒成立,
∴3tS
n+1-(2t+3)S
n=3t(t>0).
∴3ta
n+1-(2t+3)a
n=0,化為
=
為不等式0的常數(shù),
∴數(shù)列{a
n}是等比數(shù)列;
(II)解:由(I)可得f(t)=
=
+,
∴b
n=f(
)=
+bn-1,
∴b
n-b
n-1=
,
∴數(shù)列{b
n}是等差數(shù)列,
∴b
n=1+
(n-1)=
.
(III)∵b
2n=
,b
2n-1-b
2n+1=
-.
∴b
1b
2-b
2b
3+b
3b
4-…+b
2n-1b
2n-b
2nb
2n+1=
-(++…+)=
-×
=-
.
點(diǎn)評:本題考查了遞推式的意義、等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于難題.