3.已知三棱錐S-ABC所有頂點都在球O的表面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,則球O的表面積為( 。
A.$\frac{5}{2}$πB.C.D.$\frac{5}{3}$π

分析 求出BC,可得△ABC外接圓的半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐的外接球表面積.

解答 解:∵AB=1,AC=1,∠BAC=120°,
∴BC=$\sqrt{1+1-2×1×1×(-\frac{1}{2})}$=$\sqrt{3}$,
∴三角形ABC的外接圓直徑2r=$\frac{\sqrt{3}}{sin120°}$=2,
∴r=1,
∵SC⊥面ABC,SC=1,三角形OSC為等腰三角形,
∴該三棱錐的外接球的半徑R=$\sqrt{1+\frac{1}{4}}$=$\frac{\sqrt{5}}{2}$,
∴該三棱錐的外接球的表面積為S=4πR2=4π×($\frac{\sqrt{5}}{2}$)2=5π.
故選:B.

點評 本題考查三棱錐的外接球表面積,考查直線和平面的位置關系,確定三棱錐的外接球的半徑是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在三棱柱ABC-A1B1C1中,底面△ABC是邊長為2的等邊三角形,過A1C作平面A1CD平行于BC1,交AB于D點,
(Ⅰ)求證:CD⊥AB
(Ⅱ)若四邊形BCC1B1是正方形,且A1D=5$\sqrt{5}$,求直線A1D與平面CBB1C1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是等差數(shù)列,其中a1=25,a4=16.
(1)求數(shù)列{an}的通項公式;
(2)當n為何值時,數(shù)列{an}的前n項和Sn取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x)=x3-3x+m,若在區(qū)間[0,2]上任取三個數(shù)a、b、c,均存在以f(a)、f(b)、f(c)為邊長的三角形,則實數(shù)m的取值范圍為(6,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知定義在R上的函數(shù)y=f(x)對于任意的x都滿足f(x+2)=f(x).當-1≤x<1時,f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|至少有6個零點,則a的取值范圍是(0,$\frac{1}{5}$]∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在直角坐標系中,圓錐曲線C:$\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù))的焦點坐標是(  )
A.(±1,0)B.(±2,0)C.$(±2\sqrt{2},0)$D.(±4,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.現(xiàn)有7名世博會志愿者,其中志愿者A1、A2、A3通曉日語,B1、B2通曉俄語,C1、C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.已知每個志愿者被選中的機會均等.
(Ⅰ)求A1被選中的概率;
(Ⅱ)求B1和C1至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.曲線y=e-5x+2在點(0,3)處的切線方程為y=-5x+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x)=$\frac{sinx}{x}$在(0,$\frac{π}{2}$)上是減函數(shù),若0<x<1,a=($\frac{sinx}{x}$)2,b=$\frac{sinx}{x}$,c=$\frac{sin{x}^{2}}{{x}^{2}}$,則a,b,c的大小關系為a<b<c.

查看答案和解析>>

同步練習冊答案