分析 (I)直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+\sqrt{3}t}\\{y=2+t}\end{array}}\right.$,消去參數(shù)t可得普通方程.曲線C的極坐標(biāo)方程為ρ=3,利用互化公式可得直角坐標(biāo)方程.
(II)直線l的標(biāo)準(zhǔn)參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),代入圓的方程可得:t2+(2-$\sqrt{3}$)t-4=0,可得|PM|•|PN|=|t1t2|.
解答 解:(I)直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+\sqrt{3}t}\\{y=2+t}\end{array}}\right.$,消去參數(shù)t可得普通方程:x+$\sqrt{3}$y+2$\sqrt{3}$+1=0.
曲線C的極坐標(biāo)方程為ρ=3,可得直角坐標(biāo)方程:x2+y2=9.
(II)直線l的標(biāo)準(zhǔn)參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),代入圓的方程可得:t2+(2-$\sqrt{3}$)t-4=0,
∴t1t2=-4.
∴|PM|•|PN|=|t1t2|=4.
點評 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化公式、參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f:x→y=$\frac{1}{6}$x | B. | f:x→y=$\frac{1}{3}$x | C. | f:x→y=$\frac{1}{2}$x | D. | f:x→y=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 無最大值 | |
B. | 極大值為2 | |
C. | 極小值為$\frac{2e}{3}$ | |
D. | 函數(shù)g(x)=f(x)-2的圖象與x軸只有兩個交點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 50 | B. | 45 | C. | 36 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com