2.已知函數(shù)f(x)滿足:f(x)=2f(2x-1)-3x2+2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.

分析 根據(jù)f(x)=2f(2x-1)-3x2+2求出y=f(x)在點(diǎn)(1,f(1))處的切線方程的斜率,切點(diǎn)坐標(biāo),根據(jù)點(diǎn)斜式可求導(dǎo)切線方程.

解答 解:∵f(x)=2f(2x-1)-3x2+2,
∴f(1)=2f(1)-3+2,
∴f(1)=1
∵f(x)=2f(2x-1)-3x2+2,
∴f'(x)=4f′(2x-1)-6x,
∴f'(1)=4f′(1)-6,
∴f'(1)=2
∴y=f(x)在(1,f(1))處的切線斜率為y′=2.
∴函數(shù)y=f(x)在(1,f(1))處的切線方程為y-1=2(x-1),
即y=2x-1.
故答案為y=2x-1.

點(diǎn)評(píng) 本題主要考查求函數(shù)解析式的方法和函數(shù)的求導(dǎo)法則以及導(dǎo)數(shù)的幾何意義.函數(shù)在某點(diǎn)的導(dǎo)數(shù)值等于該點(diǎn)的切線方程的斜率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,a=8,b=10,A=45°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,命題q:對(duì)任意實(shí)數(shù)x都有x2-3ax+1>0恒成立;若p和q中有且只有一個(gè)命題為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a>0,函數(shù)f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),-5≤f(x)≤1.
(1)設(shè)$g(x)=f(x+\frac{π}{2})$,且lgg(x)>0,求g(x)的單調(diào)遞增區(qū)間;
(2)若不等式|f(x)-m|<3對(duì)于任意$x∈({0,\frac{π}{6}}]$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+\sqrt{3}t}\\{y=2+t}\end{array}}\right.$,在以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=3.
(Ⅰ)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若P(-1,2),直線l與曲線C分別交于M,N兩點(diǎn),求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求函數(shù)y=$\frac{1}{2}$tan(5x+$\frac{π}{4}$)的對(duì)稱中心($\frac{kπ}{10}$-$\frac{π}{20}$,0),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個(gè)半徑為1cm的球與正四棱柱的六個(gè)面都相切,則該正四棱柱的體積為8cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“0<α<π”是“x2+y2cosα=1表示橢圓”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知遞增等差數(shù)列{an}滿足a1•a4=7,a2+a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和為Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案