2.直線l的傾斜角為$\frac{π}{6}$,且過點P(1,2),若直線l與圓C:x2+y2=10交于A,B兩點,則|PA|•|PB|的值為(  )
A.$2\sqrt{3}$B.5C.$2\sqrt{3}+2$D.$2\sqrt{2}+3$

分析 將直線l的參數(shù)方程代入曲線C,再由根與系數(shù)的關(guān)系,求出||PA|•|PB|的值.

解答 解:將直線l的參數(shù)方程$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$代入C:x2+y2=10,
整理得t2+($\sqrt{3}$+2)t-5=0;
由根與系數(shù)的關(guān)系,得t1+t2=-($\sqrt{3}$+2),t1t2=-5
∴|PA|•|PB|=|t1|•|t2|=5.
故選:B.

點評 本題考查了參數(shù)方程的應用問題,也考查了直線與圓的應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,平行四邊形ABCD中,AB⊥BD,DE⊥BC,∠A=60°,將△ABD,△DCE分別沿BD,DE折起,使AB∥CE.
(1)求證:AB⊥BE;
(2)若四棱錐D-ABEC的體積為$\frac{3\sqrt{3}}{2}$,求CE長并求點C到面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.己知函數(shù)f(x)=log2(4x+1)-x
(1)判斷f(x)的奇偶性并加以證明;
(2)判斷f(x)的單調(diào)性(不需要證明);
(3)解關(guān)于m的不等式f(m)-f(2m+1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知點H在圓D:(x-2)2+(y+3)2=32上運動,點P坐標為(-6,3),線段PH中點為M,
(1)求點M的軌跡方程,
(2)平面內(nèi)是否存在定點A(a,b),使M到O(0,0)、A的距離之比為常數(shù)λ(λ≠1),若存在,求出A的坐標及λ的值;若不存在,說明理由;
(3)若直線y=kx與M的軌跡交于B、C兩點,N(0,m)使NB⊥NC,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.圓x2+y2-2ax=0上有且僅有一點滿足:到定點O(0,0)與A(3,0)的距離之比為2,則實數(shù)a的取值范圍為{1,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式:y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a為常數(shù),已知銷售的價格為5元/千克時,每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.動直線y=a與圓x2+y2=1及直線2x+y-4=0分別交于P、Q兩點,則|PQ|的最小值為2-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓方程為x2+y2+4mx-12y+4m-2=0與直線x-y+1=0.
(1)用m去表示圓的半徑和面積;
(2)求圓面積最小時,圓的一般式方程;
(3)當圓面積最小時,判斷圓與直線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數(shù)為0.01;固定部分為100元.
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?

查看答案和解析>>

同步練習冊答案