分析 (1)由x=5時,y=11,代入函數(shù)的解析式,解關(guān)于a的方程,可得a值;
(2)商場每日銷售該商品所獲得的利潤=每日的銷售量×銷售該商品的單利潤,可得日銷售量的利潤函數(shù)為關(guān)于x的三次多項式函數(shù),再用求導(dǎo)數(shù)的方法討論函數(shù)的單調(diào)性,得出函數(shù)的極大值點,從而得出最大值對應(yīng)的x值.
解答 解:(1)因為x=5時,y=11,
y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a為常數(shù).
所以$\frac{a}{2}$+10=11,故a=2;
(2)由(1)可知,該商品每日的銷售量y=$\frac{2}{x-3}$+10(x-6)2,
所以商場每日銷售該商品所獲得的利潤為f(x)=(x-3)[$\frac{2}{x-3}$+10(x-6)2]
=2+10(x-3)(x-6)2,3<x<6.
從而,f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-6)(x-4),
于是,當x變化時,f(x)、f′(x)的變化情況如下表:
x | (3,4) | 4 | (4,6) |
f'(x) | + | 0 | - |
f(x) | 單調(diào)遞增 | 極大值42 | 單調(diào)遞減 |
點評 本題考查導(dǎo)數(shù)在實際問題中的運用:求最值,求出利潤的函數(shù)式和正確求導(dǎo)是解題的關(guān)鍵,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 5 | C. | $2\sqrt{3}+2$ | D. | $2\sqrt{2}+3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 2 | C. | 3 | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com