【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為、,拋物線的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn).
(1)求橢圓的方程;
(2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于、兩點(diǎn),那么以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)以為直徑的圓過(guò)定點(diǎn).
【解析】
(1)根據(jù)拋物線的焦點(diǎn)與橢圓的頂點(diǎn)公式求解即可.
(2) 設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,列出韋達(dá)定理,并根據(jù)直線與圓相切得出的關(guān)系式,代入證明即可.
(1)因?yàn)闄E圓的離心率,所以,即.
因?yàn)閽佄锞的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn),
所以,所以.所以橢圓的方程為.
(2)因?yàn)橹本的斜率存在且不為零.故設(shè)直線的方程為.
由消去,得,
所以設(shè),則.
所以.
所以.①
因?yàn)橹本和圓相切,所以圓心到直線的距離,
整理,得,②
將②代入①,得,顯然以為直徑的圓經(jīng)過(guò)定點(diǎn)
綜上可知,以為直徑的圓過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,B,C分別是海岸線上的兩個(gè)城市,兩城市間由筆直的海濱公路相連,B,C之間的距離為100km,海島A在城市B的正東方50處.從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車(chē)到城市C.已知船速為25km/h,車(chē)速為75km/h.
(1)試建立由A經(jīng)P到C所用時(shí)間與的函數(shù)解析式;
(2)試確定登陸點(diǎn)P的位置,使所用時(shí)間最少,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年中秋節(jié)到來(lái)之際,某超市為了解中秋節(jié)期間月餅的銷(xiāo)售量,對(duì)其所在銷(xiāo)售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購(gòu)買(mǎi)量單位:進(jìn)行了問(wèn)卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費(fèi)者月餅購(gòu)買(mǎi)量在的概率;
已知該超市所在銷(xiāo)售范圍內(nèi)有20萬(wàn)人,并且該超市每年的銷(xiāo)售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)這1000名消費(fèi)者的人均月餅購(gòu)買(mǎi)量估計(jì)該超市應(yīng)準(zhǔn)備多少?lài)嵲嘛炃『媚軡M(mǎn)足市場(chǎng)需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上(異于極點(diǎn)),若四點(diǎn)依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)求的極值;
(2)若對(duì)任意的,當(dāng)時(shí),恒成立,求實(shí)數(shù)的最大值;
(3)若函數(shù)恰有兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保障全國(guó)第四次經(jīng)濟(jì)普查順利進(jìn)行,國(guó)家統(tǒng)計(jì)局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).在普查過(guò)程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶(hù)登記. 由于種種情況可能會(huì)導(dǎo)致入戶(hù)登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn). 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個(gè)體經(jīng)營(yíng)戶(hù),普查情況如下表所示:
普查對(duì)象類(lèi)別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營(yíng)戶(hù) | 100 | 50 | 150 |
合計(jì) | 140 | 60 | 200 |
(1)寫(xiě)出選擇 5 個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶(hù)登記是否順利與普查對(duì)象的類(lèi)別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個(gè)體經(jīng)營(yíng)戶(hù)作為普查對(duì)象,入戶(hù)登記順利的對(duì)象數(shù)記為, 寫(xiě)出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線與曲線交于點(diǎn).
(1)求曲線的參數(shù)方程,的極坐標(biāo)方程;
(2)若,是曲線上的兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com