【題目】(m+x)(1+x)3的展開式中x的奇數(shù)次冪項的系數(shù)之和為16,則 xmdx= .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體ABCD—A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上.
(Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若平面D1EC與平面ECD的夾角大小為45°,求點B到平面D1EC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個頂點為,半焦距為,離心率,又直線交橢圓于, 兩點,且為中點.
(1)求橢圓的標準方程;
(2)若,求弦的長;
(3)若點恰好平分弦,求實數(shù);
(4)若滿足,求實數(shù)的取值范圍并求的值;
(5)設(shè)圓與橢圓相交于點與點,求的最小值,并求此時圓的方程;
(6)若直線是圓的切線,證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足,.
求函數(shù)的解析式;
若關(guān)于x的不等式在上恒成立,求實數(shù)t的取值范圍;
若函數(shù)在區(qū)間內(nèi)至少有一個零點,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知直線l:x+y+a=0與點A(0,2),若直線l上存在點M滿足|MA|2+|MO|2=10(O為坐標原點),則實數(shù)a的取值范圍是( )
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個值達到或以上,就稱該球員拿到了兩雙.下表是某球員在最近五場比賽中的數(shù)據(jù)統(tǒng)計:
場次 | 得分 | 籃板 | 助攻 | 搶斷 | 蓋帽 |
()從上述比賽中任選場,求該球員拿到“兩雙”的概率.
()從上述比賽中任選場,設(shè)該球員拿到“兩雙”的次數(shù)為,求的分布列及數(shù)學期望.
()假設(shè)各場比賽互相獨立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設(shè)其在接下來的三場比賽中獲得“兩雙”的次數(shù)為,試比賽與的大小關(guān)系(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】.如圖,已知,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,n,….利用這兩組同心圓可以畫出以A、B為焦點的雙曲線. 若其中經(jīng)過點M、N、P的雙曲線的離心率分別是.則它們的大小關(guān)系是 (用“”連接).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知圓C的圓心C( , ),半徑r= .
(1)求圓C的極坐標方程;
(2)若α∈[0, ),直線l的參數(shù)方程為 (t為參數(shù)),直線l交圓C于A、B兩點,求弦長|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,C為圓周上一點,過C作圓O的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E.
(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com