設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)為B(0,
3
)
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),離心率e=
1
2
,直線(xiàn)l:y=x+1與橢圓交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)求弦MN的長(zhǎng).
考點(diǎn):直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題
專(zhuān)題:綜合題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:(1)利用橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)為B(0,
3
)
,求出b,利用離心率e=
1
2
,求出a,即可求橢圓C的方程;
(2)直線(xiàn)l:y=x+1,代入橢圓方程3x2+4(x+1)2=12,設(shè)M(x1,y1),N(x2,y2),求出|x1-x2|,即可求弦MN的長(zhǎng).
解答: 解:(1)∵橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)為B(0,
3
)
,
∴b=
3
,
∵離心率e=
1
2
,
a2-3
a
=
1
2
,
∴a=2,
∴橢圓C的方程為
x2
4
+
y2
3
=1
;
(2)直線(xiàn)l:y=x+1,代入橢圓方程3x2+4(x+1)2=12,
整理可得7x2+8x-8=0,
設(shè)M(x1,y1),N(x2,y2),則x1+x2=-
8
7
,x1x2=-
8
7
,
∴|x1-x2|=
64
49
+
32
7
=
12
2
7
,
∴|MN|=
2
12
2
7
=
24
7
點(diǎn)評(píng):本題考查橢圓的方程與性質(zhì),考查直線(xiàn)與橢圓的位置關(guān)系,考查弦長(zhǎng)的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[120,130),[130,140),[l40,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取30人參加一項(xiàng)活動(dòng),則從身高在[120,130)的學(xué)生中選取的人數(shù)應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).如圖是測(cè)量數(shù)據(jù)的莖葉圖:

規(guī)定:當(dāng)產(chǎn)品中的此種元素含量≥15毫克時(shí)為優(yōu)質(zhì)品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(Ⅱ)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AP
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0,m∈R.
(Ⅰ)若方程C表示圓,求m的取值范圍;
(Ⅱ)若圓C與直線(xiàn)l:4x-3y+7=0相交于M,N兩點(diǎn),且|MN|=2
3
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知離心率為
3
2
的橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線(xiàn)
x2
3
-y2=1的左右焦點(diǎn),點(diǎn)P是橢圓C1上不同于A1,A2的任意一點(diǎn),設(shè)直線(xiàn)PA1,PA2的斜率分別為k1,k2
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)當(dāng)k1=
1
2
,在焦點(diǎn)在x軸上的橢圓C1上求一點(diǎn)Q,使該點(diǎn)到直線(xiàn)PA2的距離最大.
(3)試判斷乘積“k1•k2”的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)到F1、F2兩點(diǎn)的距離之和為4.
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)過(guò)橢圓C的焦點(diǎn)F2作AB的平行線(xiàn)交橢圓于P、Q兩點(diǎn),求弦長(zhǎng)|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)的值域:y=|x+1|-|2x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①直線(xiàn)y=2x在x,y軸上的截距相等;
②參數(shù)方程
x=3sinα
y=3cosα
為參數(shù))表示圓;
③世界上第一個(gè)把π計(jì)算到3.1415926<π<3.1415927的人是中國(guó)人劉徽;
④拋兩枚均勻的骰子,恰好出現(xiàn)一奇一偶的概率為
1
4

⑤滿(mǎn)足||PF1|-|PF2||=2a(a>0)的動(dòng)點(diǎn)P的軌跡是雙曲線(xiàn).
其中錯(cuò)誤的命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案