過點P(0,-2)的直線L與以A(1,1)、B(-2,3)為端點的線段有公共點,則直線L的斜率k的取值范圍是( 。
分析:由直線l恒過P(0,-2),由A,B及P的坐標(biāo)分別求出直線PA和直線PB方程的斜率,根據(jù)直線l與線段AB有公共點,結(jié)合圖形,由求出的兩斜率即可得到k的取值范圍.
解答:解:由題得直線過定點P(0,-2),
∵KPA=
1-(-2)
1-0
=3;KPB=
3-(-2)
-2-0
=-
5
2

∴要使直線l與線段AB有交點,則k的取值范圍是k≥3或k≤-
5
2

故選:B.
點評:在解決問題時,求出特殊位置時的斜率的值,借助圖形寫出k的取值范圍,考查了學(xué)生利用數(shù)形結(jié)合的思想解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的焦點在y軸上,兩頂點間的距離為4,漸近線方程為y=±2x.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)(Ⅰ)中雙曲線的焦點F1,F(xiàn)2關(guān)于直線y=x的對稱點分別為F1′,F(xiàn)2′,求以F1′,F(xiàn)2′為焦點,且過點P(0,2)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知中心為坐標(biāo)原點O,焦點在x軸上的橢圓的兩個短軸端點和左右焦點所組成的四邊形是面積為2的正方形,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點P(0,2)的直線l與橢圓交于點A,B,當(dāng)△OAB面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,且右頂點為A(2,0).
(Ⅰ)求橢圓G的方程;
(Ⅱ)過點P(0,2)的直線l與橢圓G交于A,B兩點,當(dāng)以線段AB為直徑的圓經(jīng)過坐標(biāo)原點時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(0,2)的直線L與拋物線y2=2x有且只有一個公共點,則直線L的方程是
x=0,y=2,y=
1
4
x+2
x=0,y=2,y=
1
4
x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•孝感模擬)已知一動圓M恒過點F(1,0),且總與直線x=-1相切.
(I)求動圓圓心M的軌跡C的方程;
(Ⅱ)過點P(0,2)的直線l與曲線C交于A,B兩點,且直線l與x軸交于點E.設(shè)
PA
AE
,
PB
BE
,試問λ+μ是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案