13.已知復(fù)數(shù)z滿足:$\frac{3-i}{z-3i}$=1+i,則|z|等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求得z,再代入復(fù)數(shù)模的計(jì)算公式求解.

解答 解:由$\frac{3-i}{z-3i}$=1+i,得$z-3i=\frac{3-i}{1+i}=\frac{(3-i)(1-i)}{(1+i)(1-i)}=\frac{2-4i}{2}=1-2i$,
∴z=1+i,
則|z|=$\sqrt{{1}^{2}+{1}^{2}}=\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)任意的x∈R,函數(shù)f(x)=x3+ax2+7ax有三個(gè)單調(diào)區(qū)間,則(  )
A.0≤a≤21B.a=0或a=21C.a<0或a>21D.a=0或a=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.用秦九韶算法計(jì)算f(x)=3x6+5x5+6x3-8x2+35x+12,當(dāng)x=-2時(shí),v4=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.觀察以下等式:$1+2+3+…+n=\frac{n(n+1)}{2}$;$1×2+2×3+3×4+…+n×(n+1)=\frac{n×(n+1)×(n+2)}{3}$;            $1×2×3+2×3×4+3×4×5+…+n×(n+1)×(n+2)=\frac{n×(n+1)×(n+2)×(n+3)}{4}$猜想式子1×2×3×4+2×3×4×5+3×4×5×6+…+n×(n+1)×(n+2)(n+3)的和Sn,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.“3<a<5”是“方程$\frac{x^2}{a-3}+\frac{y^2}{5-a}=1$表示橢圓”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知定義在R上的函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$,函數(shù)g(x)=$\frac{mx}{1+x}$的定義域?yàn)椋?1,+∞).
(1)若g(x)=$\frac{mx}{1+x}$在(-1,+∞)上遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(2)在(1)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)若$tanα=\frac{1}{2}$,求sin2α+sinαcosα的值
(2)化簡(jiǎn)$\frac{1+sinx}{cosx}•\frac{sin2x}{{2{{cos}^2}(\frac{π}{4}-\frac{x}{2})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.點(diǎn)A(-2,0)到拋物線C:y2=8x的焦點(diǎn)F的距離|AF|等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直三棱柱ABC-A1B1C1中,AC=BC=AA1,∠ACB=90°,則直線A1C與平面A1BC1所成的角的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步練習(xí)冊(cè)答案