A. | 30° | B. | 60° | C. | 90° | D. | 120° |
分析 在空間取一點(diǎn)A,作A作BA∥a,AC∥b,過B作BO⊥l,交l于O,連結(jié)OC,則OC⊥l,從而直線線AB與直線AC的夾角為60°,由此能求出a與b的夾角.
解答 解:如圖,二面角α-l-β為60°,異面直線a,b分別垂直α,β,
在空間取一點(diǎn)A,作A作BA∥a,AC∥b,
則 AB⊥α,B是垂足,AC⊥β,C是垂足,
過B作BO⊥l,交l于O,連結(jié)OC,則OC⊥l,
由題意ABOC是平面圖形,∠BOC是二面角α-l-β的平面角,
∴∠BOC=60°,
∴∠BAC=120°,
∴直線AB與直線AC的夾角為60°,
∴a與b的夾角為60°.
故選:B.
點(diǎn)評(píng) 本題考查異面地直線的夾角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2}$,-$\sqrt{2}$) | B. | (1,-1) | C. | (1,-i) | D. | (2,-2i) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 | B. | 垂心 | C. | 外心 | D. | 內(nèi)心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}-{y^2}$=1 | B. | $\frac{x^2}{3}-\frac{y^2}{12}$=1 | C. | $\frac{x^2}{12}-\frac{y^2}{3}$=1 | D. | ${x^2}-\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | B. | (x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | ||
C. | (x-3)2+(y-2$\sqrt{3}$)2=16 | D. | (x-3)2+(y+2$\sqrt{3}$)2=16 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com