17.若復(fù)數(shù)z滿(mǎn)足z•(i-2)=5,(i是虛數(shù)單位),則$\overline z$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算性質(zhì)、幾何意義、共軛復(fù)數(shù)的定義即可得出.

解答 解:z•(i-2)=5,
∴z•(i-2)(-i-2)=5(-i-2),
∴z=-2-i,
則$\overline z$=-2+i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)(-2,1)位于第二象限.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算性質(zhì)、幾何意義、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知首項(xiàng)都是1的數(shù)列{an},{bn}(bn≠0,n∈N*)滿(mǎn)足$\frac{_{n+1}}{_{n}}$=$\frac{{a}_{n+1}}{{a}_{n}-2_{n}}$.
(1)令cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的通項(xiàng)公式;
(2)若{bn}是由正數(shù)組成的等比數(shù)列,且6bn+2+bn+1=bn,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.頂點(diǎn)間距離是2,漸近線方程是y=±x的雙曲線方程是( 。
A.x2-y2=1B.x2-y2=2
C.x2-y2=1或y2-x2=1D.x2-y2=2或y2-x2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知i是虛數(shù)單位,復(fù)數(shù)z=1+2i,則$i\overline z$=( 。
A.2-iB.2+iC.-2-iD.-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow$=(x,-2),且$\overrightarrow{a}$與2$\overrightarrow{a}$-$\overrightarrow$共線,則實(shí)數(shù)x的值為-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.記方程①x2+a1x+1=0,②x2+a2x+1=0,③x2+a3x+1=0,其中a1,a2,a3是正實(shí)數(shù),當(dāng)a1,a2,a3成等比數(shù)列,下列選項(xiàng)中,正確的是( 。
A.若方程②③都有實(shí)根則方程①無(wú)實(shí)根
B.若方程②③都有實(shí)根則方程①有實(shí)根
C.若方程②無(wú)實(shí)根但方程③有實(shí)根時(shí),則方程①無(wú)實(shí)根
D.若方程②無(wú)實(shí)根但方程③有實(shí)根時(shí),則方程①有實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.給出下列四個(gè)命題:
①若命題“若¬p則q”為真命題,則命題“若¬q則p”也是真命題
②直線a∥平面α的充要條件是:直線a?平面α
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④若命題p:“?x∈R,x2-x-1>0“,則命題p的否定為:“?x∈R,x2-x-1≤0”
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)y=x2cosx的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={0,1,2},B={m,3,4},若A∩B={2},則實(shí)數(shù)m=( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案