5.已知i是虛數(shù)單位,復(fù)數(shù)z=1+2i,則$i\overline z$=( 。
A.2-iB.2+iC.-2-iD.-2+i

分析 直接利用復(fù)數(shù)的代數(shù)形式混合運(yùn)算求解即可.

解答 解:i是虛數(shù)單位,復(fù)數(shù)z=1+2i,則$i\overline z$=i(1-2i)=i-2i2=2+i.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a-$\frac{5}{2-i}$(a∈R)是純虛數(shù),則a的值為(  )
A.$-\frac{3}{2}$B.-2C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an+Sn=1,a1=$\frac{1}{2}$.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若公差為d的等差數(shù)列{bn}滿(mǎn)足b1=1,b3不大于Sn的最小值,求d的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)數(shù)列{an}是的等差數(shù)列,Sn為其前n項(xiàng)和.若S6=8S3,a3-a5=8,則a20=(  )
A.4B.36C.-74D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.給出下面四個(gè)命題:
①已知函數(shù)f(x)=2sinx,在區(qū)間[0,π]上任取一點(diǎn)x0,則使得f(x0)<1的概率為$\frac{1}{3}$;
②函數(shù)y=sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位得到函數(shù)y=cos(2x+$\frac{π}{6}$)的圖象;
③命題“?x∈R,x2-x+1>0”的否定是“?x∈R,x2-x+1<0”
④若函數(shù)f(x)是定義在R上的奇函數(shù),且f(x+1)+f(2-x)=0,則f(2016)=0.
其中所有正確命題的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-5≤0}\\{y-3≥0}\\{y≤x+1}\\{\;}\end{array}\right.$,則目標(biāo)函數(shù)z=-x+y的最小值為(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若復(fù)數(shù)z滿(mǎn)足z•(i-2)=5,(i是虛數(shù)單位),則$\overline z$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)$z=\frac{2}{1+i}$,其中i為虛數(shù)單位,則z2=( 。
A.2B.$\sqrt{2}$C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上是單調(diào)增函數(shù)的是( 。
A.$y=\frac{1}{x}$B.y=|x|-1C.y=lgxD.$y={({\frac{1}{2}})^{|x|}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案