分析 (Ⅰ)根據(jù)分母不能為0,可得函數(shù)的定義域,進(jìn)而根據(jù)函數(shù)奇偶性的定義,可得函數(shù)為偶函數(shù).
(Ⅱ)證法一:設(shè)x1,x2是區(qū)間[3,+∞)上的兩個(gè)任意實(shí)數(shù),且x1<x2,作差判斷f(x1),f(x2)的大小,可得結(jié)論
證法二:求導(dǎo),根據(jù)x∈[3,+∞)時(shí),f′(x)≥0恒成立,可得:函數(shù)f(x)在[3,+∞)上為單調(diào)遞增函數(shù);
解答 解:(Ⅰ)函數(shù)f(x)=x+$\frac{9}{x}$的定義域?yàn)閧x|x≠0}關(guān)于原點(diǎn)對(duì)稱(chēng),
∵f(-x)=-x-$\frac{9}{x}$=-(x+$\frac{9}{x}$)=-f(x).
∴函數(shù)f(x)是奇函數(shù);
(Ⅱ)f(x)在區(qū)間[3,+∞)上單調(diào)遞增,理由如下:
證法一:設(shè)x1,x2是區(qū)間[3,+∞)上的兩個(gè)任意實(shí)數(shù),且x1<x2,…(2分)
于是f(x1)-f(x2)=(${x}_{1}+\frac{9}{{x}_{1}}$)-(${x}_{2}+\frac{9}{{x}_{2}}$)=(x1-x2)$\frac{{x}_{1}•{x}_{2}-9}{{x}_{1}•{x}_{2}}$…(4分)
因?yàn)閤2>x1≥3,所以x1x2-9≥0,x1-x2<0,
所以f(x1)-f(x2)<0,所以f(x1)<f(x2),…(6分)
所以函數(shù)f(x)在[3,+∞)上為單調(diào)增函數(shù).…(7分)
證法二:∵f(x)=x+$\frac{9}{x}$.
∴f′(x)=1-$\frac{9}{{x}^{2}}$.
當(dāng)x∈[3,+∞)時(shí),
f′(x)≥0恒成立,
故函數(shù)f(x)在[3,+∞)上為單調(diào)遞增函數(shù);
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是抽象函數(shù)的應(yīng)用,函數(shù)的單調(diào)性和函數(shù)的奇偶性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | ($\frac{1}{2}$,2] | C. | [-1,$\frac{1}{2}$) | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
組號(hào) | 1 | 2 | 3 | 4 | 5 |
溫差x(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com