已知f(x)=ax-cosx,x∈[
π
4
π
3
],若?x1∈[
π
4
,
π
3
],?x2∈[
π
4
,
π
3
],x1≠x2,
f(x2)-f(x1)
x2-x1
<0則實數(shù)a的取值范圍為
 
考點:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件判斷函數(shù)f(x)的單調(diào)性,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵若?x1∈[
π
4
,
π
3
],?x2∈[
π
4
π
3
],x1≠x2
f(x2)-f(x1)
x2-x1
<0,
∴f(x)=ax-cosx,在[
π
4
,
π
3
]上單調(diào)遞減,
即f'(x)=a+sinx≤0在[
π
4
,
π
3
]上恒成立,
即a≤-sinx在[
π
4
,
π
3
]上恒成立,
當(dāng)x∈[
π
4
,
π
3
],sinx∈[
2
2
3
2
],
即-sinx∈[-
3
2
,-
2
2
],
∴a≤-
3
2
,
故答案為:(-∞,-
3
2
].
點評:本題注意考查函數(shù)單調(diào)性的應(yīng)用,利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵,要熟練掌握三角函數(shù)的圖象和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線PA為圓O的切線,切點為A,直徑BC⊥OP,連接AB交PO于點D.
(1)證明:PA=PD;
(2)求證:PA•AC=AD•OC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2ln(ax)(a>0)
(1)a=e時,求f(x)在x=1處的切線方程;
(2)若f′(x)≤x2對任意的x>0恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=1時,設(shè)函數(shù)g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1
,求證:x1x2<(x1+x2)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-9,9]上隨機取一實數(shù)x,函數(shù)y=
4-x2
x-1
的定義域為D,則x∈D的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,方程為x2+y2-4x+2y=0的曲線關(guān)于直線ax-by-1=0對稱,則
3a+2b
ab
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前項和為Sn,若a9=11,a11=9,則S19等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y=
2
與兩坐標(biāo)軸圍成的三角形區(qū)域為D,在D內(nèi)任取一點P(x,y),那么使得x2+y2≤1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向邊長分別為5,6,
13
的三角形區(qū)域內(nèi)隨機投一點M,則該點M與三角形三個頂點距離都大于1的概率為( 。
A、1-
π
18
B、1-
π
12
C、1-
π
9
D、1-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)A,B兩種元件,已知生產(chǎn)A元件的正品率為75%,生產(chǎn)B元件的正品率為80%,生產(chǎn)1個元件A,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個元件B,若是正品則盈利40元,若是次品則虧損5元.
(Ⅰ)求生產(chǎn)5個元件A所得利潤不少于140元的概率;
(Ⅱ)設(shè)X為生產(chǎn)1個元件A和1個元件B所得總利潤,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案