15.已知函數(shù)f(x)=|lnx|,則函數(shù)y=f(x)-f(e-x)的零點的個數(shù)為( 。
A.1B.2C.3D.5

分析 利用方程的根與函數(shù)的零點關系,通過求解方程即可得到結(jié)果.

解答 解:函數(shù)f(x)=|lnx|,則f(x)-f(e-x)=0可得|lnx|=|ln(e-x)|,x∈(0,e).
故x=e-x或e-x=$\frac{1}{x}$,解得x=$\frac{e}{2}$或$\frac{e±\sqrt{{e}^{2}-4}}{2}$,
故選:C.

點評 本題考查函數(shù)的零點個數(shù)的求法,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.求函數(shù)y=$\sqrt{3-2x-{x}^{2}}$的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知直線2mx-y-8m-3=0和圓(x-3)2+(y+6)2=25相交于A,B兩點,當弦AB最短時,m的值為( 。
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,在四棱錐A-BCDE中,AE⊥面BCDE,△BCE是正三角形,BD和CE的交點F恰好平分CE,又AE=BE=2,∠CDE=120°,
(Ⅰ)證明:面ABD⊥面AEC;
(Ⅱ)求二面角B-CA-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四邊形ABCD為正方形,以AB為直徑 的半圓E與以C為圓心CB為半徑的圓弧相交于點P,過點P作圓C的切線PF交AD于點F,連接CP.
(Ⅰ)證明:CP是圓E的切線;
(Ⅱ)求$\frac{AF}{PF}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院的60人進行了問卷調(diào)查,得到如下列聯(lián)表:
患心肺疾病不患心肺疾病合計
m6
12n
合計60
已知在女病人中隨機抽取一人,抽到患心肺疾病的人的概率為$\frac{2}{5}$.
(1)求出m,n;
(2)探討是否有99.5%的把握認為患心肺疾病與性別有關?說明理由;
參考:
①臨界值表
P(k2>k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
②${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=(a+1)x-lnx(a∈R).
(Ⅰ)若函數(shù)f(x)在點P(1,f(1))處的切線與直線y=2x+1垂直,求實數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在x∈(0,e]上的最小值為3,求實數(shù)a的值;
(Ⅲ)當x∈(0,e]時,證明:e2x2-xlnx>lnx+$\frac{5}{2}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設關于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]內(nèi)有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.第17屆亞洲運動會于2014年9月19日--10月4日在韓國仁川舉行.現(xiàn)有5個人去觀看某日下午的比賽,根據(jù)組委會安排當天下午有甲、乙兩場比賽,5人約定:每一個人通過一枚質(zhì)地均勻的骰子決定自己觀看哪場比賽,擲出點數(shù)為1或2的人去觀看甲場比賽,擲出點數(shù)大于2的人去觀看乙場比賽.
(1)求這5個人中恰有2人去觀看甲場比賽的概率;
(2)求這5個人中去觀看甲場比賽的人數(shù)大于去觀看乙場比賽的人數(shù)的概率;
(3)用X,Y分別表示這5個人中觀看甲、乙場比賽的人數(shù),記ξ=|X-Y|,求隨機變量ξ的分布列與數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案