【題目】已知函數(shù),對(duì)于函數(shù)有下述四個(gè)結(jié)論:
①函數(shù)在其定義域上為增函數(shù);
②對(duì)于任意的,都有成立;
③有且僅有兩個(gè)零點(diǎn);
④若在點(diǎn)處的切線也是的切線,則必是零點(diǎn).
其中所有正確的結(jié)論序號(hào)是( )
A.①②③B.①②C.②③④D.②③
【答案】C
【解析】
利用特殊值法可判斷①的正誤;推導(dǎo)出當(dāng)時(shí),從而可判斷②的正誤;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理可判斷③的正誤;利用導(dǎo)數(shù)的幾何意義得出等式,進(jìn)而可判斷④的正誤.綜合可得出結(jié)論.
,,
所以,函數(shù)在其定義域上不是增函數(shù),①錯(cuò);
∵當(dāng)時(shí),則,因此成立,②對(duì);
函數(shù)的定義域?yàn)?/span>,且,
所以,函數(shù)在區(qū)間和上均為增函數(shù),
,,
,即函數(shù)在區(qū)間上有且僅有個(gè)零點(diǎn).
,,,
所以,函數(shù)區(qū)間上有且僅有個(gè)零點(diǎn).
因此,函數(shù)有且僅有兩個(gè)零點(diǎn),③對(duì);
在點(diǎn)處的切線的方程.
又也是的切線,設(shè)其切點(diǎn)為,則的斜率,
從而直線的斜率,,即切點(diǎn)為,
又點(diǎn)在上,,
即必是函數(shù)的零點(diǎn),④對(duì).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形ABCD中(如圖1),,,,,,點(diǎn)E在CD上,且,將沿AE折起,使得平面平面ABCE(如圖2),G為AE中點(diǎn).
(Ⅰ)求四棱錐的體積;
(Ⅱ)在線段BD上是否存在點(diǎn)P,使得平面ADE?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列:,,,,,..,,,,,,,…的前n項(xiàng)和為,正整數(shù),滿足:①,②是滿足不等式的最小正整數(shù),則( )
A.6182B.6183C.6184D.6185
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面是矩形,底面,且,設(shè)E、F、G分別為PC、BC、CD的中點(diǎn),H為EG的中點(diǎn),如圖.
(1)求證:平面;
(2)求直線FH與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”; 乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校甲、乙兩個(gè)田徑隊(duì)中名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試人的跳高成績(jī)(單位:).跳高成績(jī)?cè)?/span>以上(包括)定義為“合格”,成績(jī)?cè)?/span>以下(不包括)定義為“不合格”.鑒于乙隊(duì)組隊(duì)晚,跳高成績(jī)相對(duì)較弱,為激勵(lì)乙隊(duì)隊(duì)隊(duì),學(xué)校決定只有乙隊(duì)中“合格”者才能參加市運(yùn)動(dòng)會(huì)開幕式旗林隊(duì).
(1)求甲隊(duì)隊(duì)員跳高成績(jī)的中位數(shù);
(2)如果用分層抽樣的方法從甲、乙兩隊(duì)所有的運(yùn)動(dòng)員中共抽取人,則人中“合格”與“不合格”的人數(shù)各為多少;
(3)若從所有“合格”運(yùn)動(dòng)員中選取名,用表示所選運(yùn)動(dòng)員中能參加市運(yùn)動(dòng)會(huì)開幕式旗林隊(duì)的人數(shù),試求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(sinx+cosx)2cos(2x+π).
(1)求函數(shù)f(x)的最小正周期;
(2)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,且a=2,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com