【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為( )
A. B. C. D.
【答案】C
【解析】 得出,外接球的球心O在底面中心E的正上方,且
OE=PD,在直角三角形OEA中,AE=4,R=5,所以OE=3,則PD=6,因?yàn)?/span>AD平行于面PBC,所以點(diǎn)到平面的距離與點(diǎn)D到平面的距離相等,取點(diǎn)M做DM⊥PC,∵PD⊥面ABCD,∴PD⊥BC,又BC⊥CD,PD∩CD=D,∴BC⊥面PDC,又BC面PBC,∴面PBC⊥面PDC,PC為交線,又在直角△PDC中,有DM⊥PC,∴DM⊥面PBC,∴DM即為所求距離,在Rt△PDC中,PD=6,DC=,故DM=,
即點(diǎn)D到平面PBC的距離等于,則到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OQRP為矩形,其中P,Q分別是函數(shù)f(x)= sinwx(A>0,w>0)圖象上的一個(gè)最高點(diǎn)和最低點(diǎn),O為坐標(biāo)原點(diǎn),R為圖象與x軸的交點(diǎn).
(1)求f(x)的解析式
(2)對(duì)于x∈[0,3],方程f2(x)﹣af(x)+1=0恒有四個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的最小正周期為.
(1)求的值;
(2)將函數(shù)的圖像向左平移個(gè)單位,再將得到的圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中日“釣魚島爭(zhēng)端”問(wèn)題越來(lái)越引起社會(huì)關(guān)注,我校對(duì)高一名學(xué)生進(jìn)行了一次“釣魚島”知識(shí)測(cè)試,并從中抽取了部分學(xué)生的成績(jī),(滿分分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫答題卡頻率分布表中的空格, 補(bǔ)全頻率分布直方圖, 并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);
(2)請(qǐng)你估算該年級(jí)的平均數(shù)及中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:3x+2y﹣1=0和l2:5x+2y+1=0的交點(diǎn)為A
(1)若直線l3:(a2﹣1)x+ay﹣1=0與l1平行,求實(shí)數(shù)a的值;
(2)求經(jīng)過(guò)點(diǎn)A,且在兩坐標(biāo)軸上截距相等的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)A離地面4米,最低點(diǎn)B離地面2米.觀察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀賞該壁畫,設(shè)觀賞視角∠ACB=θ.
(1)若a=1.5,問(wèn):觀察者離墻多遠(yuǎn)時(shí),視角θ最大?
(2)若tanθ= ,當(dāng)a變化時(shí),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的動(dòng)直線與拋物線:相交于兩點(diǎn).當(dāng)直線的斜率是時(shí),.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com