9.拋物線y2=4x的焦點為F,點A(3,2),P為拋物線上一點,且P不在直線AF上,則△PAF周長的最小值為( 。
A.4B.5C.$4+2\sqrt{2}$D.$5+\sqrt{5}$

分析 求△PAF周長的最小值,即求|PA|+|PF|的最小值.設(shè)點P在準線上的射影為D,則根據(jù)拋物線的定義,可知|PF|=|PD|.因此問題轉(zhuǎn)化為求|PA|+|PD|的最小值,根據(jù)平面幾何知識,當D、P、A三點共線時|PA|+|PD|最小,由此即可求出|PA|+|PF|的最小值.

解答 解:求△PAF周長的最小值,即求|PA|+|PF|的最小值,
設(shè)點P在準線上的射影為D,則
根據(jù)拋物線的定義,可知|PF|=|PD|
因此,|PA|+|PF|的最小值,即|PA|+|PD|的最小值
根據(jù)平面幾何知識,可得當D,P,A三點共線時|PA|+|PD|最小,
因此的最小值為xA-(-1)=3+1=4,
∵|AF|=$\sqrt{(3-1)^{2}+(2-0)^{2}}$=2$\sqrt{2}$,
∴△PAF周長的最小值為4+2$\sqrt{2}$,
故選C.

點評 考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,判斷當D,P,A三點共線時|PA|+|PD|最小,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右頂點分別為A1,A2,點M為橢圓上不同于A1,A2的一點,若直線MA1,MA2與直線的斜率之積為$-\frac{1}{2}$,則橢圓的離心率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B、C兩點,過B作AC的垂線交x軸于點D,若點D到直線BC的距離小于a+$\sqrt{{a}^{2}+^{2}}$,則$\frac{a}$的取值范圍為(  )
A.(0,1)B.(1,+∞)C.(0,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.云南省2016年高中數(shù)學(xué)學(xué)業(yè)水平考試的原始成績采用百分制,發(fā)布成績使用等級制,各登記劃分標準為:85分及以上,記為A等,分數(shù)在[70,85)內(nèi),記為B等,分數(shù)在[60,70)內(nèi),記為C等,60分以下,記為D等,同時認定等級分別為A,B,C都為合格,等級為D為不合格.
已知甲、乙兩所學(xué)校學(xué)生的原始成績均分布在[50,100]內(nèi),為了比較兩校學(xué)生的成績,分別抽取50名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]分別作出甲校如圖1所示樣本頻率分布直方圖,乙校如圖2所示樣本中等級為C、D的所有數(shù)據(jù)莖葉圖.

(1)求圖中x的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;
(2)在選取的樣本中,從甲、乙兩校C等級的學(xué)生中隨機抽取3名學(xué)生進行調(diào)研,用X表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2-5x-6≤0},$B=\left\{{\left.x\right|\frac{1}{x-1}>0}\right\}$,則A∩B等于( 。
A.[-1,6]B.(1,6]C.[-1,+∞)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.${(2x+\frac{1}{{\sqrt{x}}})^5}$的展開式中,$\sqrt{x}$的系數(shù)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{b^2}=1(\frac{{2\sqrt{3}}}{3}<b<2)$,動圓P:${(x-{x_0})^2}+{(y-{y_0})^2}=\frac{4}{3}$(圓心P為橢圓C上異于左右頂點的任意一點),過原點O作兩條射線與圓P相切,分別交橢圓于M,N兩點,且切線長的最小值為$\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:△MON的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等差數(shù)列{an},等比數(shù)列{bn}的前n項和為Sn,Tn(n∈N*),若Sn=$\frac{3}{2}$n2+$\frac{1}{2}$n,b1=a1,b2=a3,則an=3n-1,Tn=$\frac{2}{3}({4}^{n}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線ax-y=0(a≠0)與函數(shù)$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$圖象交于不同的兩點A,B,且點C(6,0),若點D(m,n)滿足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,則m+n=( 。
A.1B.2C.3D.a

查看答案和解析>>

同步練習(xí)冊答案