3.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≥1}\\{3x-y≤3}\end{array}\right.$,則該約束條件所圍成的平面區(qū)域的面積是2.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,求出交點(diǎn)坐標(biāo),進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由$\left\{\begin{array}{l}{x-y=-1}\\{3x-y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即B(0,1),
由$\left\{\begin{array}{l}{x+y=1}\\{3x-y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
則陰影部分的面積S=S梯形OBAD-S△OBC-S△ACD=$\frac{(1+3)×2}{2}$-$\frac{1}{2}×1×1-\frac{1}{2}×1×3$=4-$\frac{1}{2}-\frac{3}{2}$=2,
故答案為:2

點(diǎn)評(píng) 本題主要考查三角形面積的計(jì)算,根據(jù)線性規(guī)劃作出可行域,利用割補(bǔ)法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=alnx+(-1)n$\frac{1}{{x}^{n}}$,其中n∈N*,a為常數(shù).
(Ⅰ)當(dāng)n=2,且a>0時(shí),判斷函數(shù)f(x)是否存在極值,若存在,求出極值點(diǎn);若不存在,說(shuō)明理由;
(Ⅱ)若a=1,對(duì)任意的正整數(shù)n,當(dāng)x≥1時(shí),求證:f(x+1)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$共面$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowtkuhiu7$也共面,則下列說(shuō)法正確的是(  )
A.若$\overrightarrow$與$\overrightarrow{c}$不共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow6igs9fp$共面B.若$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowqpzsq1x$共面
C.當(dāng)且僅當(dāng)$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowc69hy9g$共面D.若$\overrightarrow$與$\overrightarrow{c}$不共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow46ihbm9$不共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=ax2-ax+3x+1的圖象與x軸有且只有一個(gè)交點(diǎn),那么a的值的集合為( 。
A.{1,9}B.{0,1,9}C.{0}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.?dāng)?shù)列$\frac{2}{3}$,-$\frac{4}{5}$,$\frac{6}{7}$,-$\frac{8}{9}$,…的第5項(xiàng)是$\frac{10}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算下列各式的值,寫出必要的計(jì)算過(guò)程.
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$       
(2)(log43+log83)(log32+log92)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={x/x-1>2}與B={x/-2x+5≤0},下列關(guān)于集合A與B的關(guān)系正確的是(  )
A.B⊆AB.A⊆BC.A=BD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知A、B、C是直線l上的三點(diǎn),向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$滿足:$\overrightarrow{OA}-[{y+2f'(1)}]\overrightarrow{OB}+ln(x+1)\overrightarrow{OC}=0$.則函數(shù)y=f(x)的表達(dá)式f(x)=ln(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知四棱錐P-ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點(diǎn)M為PC中點(diǎn),過(guò)A、M的平面α與此四棱錐的面相交,交線圍成一個(gè)四邊形,且平面α⊥平面PBC.
(1)在圖中畫出這個(gè)四邊形(不必說(shuō)出畫法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案