【題目】為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否取消英語聽力的問題,調(diào)查統(tǒng)計的結(jié)果如下表:

態(tài)度

應(yīng)該取消

應(yīng)該保留

無所謂

在校學(xué)生

2100

120

y

社會人士

600

x

z

已知在全體樣本中隨機(jī)抽取1人,抽到持應(yīng)該保留態(tài)度的人的概率為0.05

1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持無所謂態(tài)度的人中抽取多少人?

2)在持應(yīng)該保留態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.

【答案】I)應(yīng)在無所謂態(tài)度抽取720×=72人;

ξ的分布列為:

ξ

1

2

3

P




Eξ=2

【解析】試題分析:(1)先由抽到持應(yīng)該保留態(tài)度的人的概率為,由已知條件求出,再求出持無所謂態(tài)度的人數(shù),由此利用分層抽樣的概念就能求出應(yīng)在無所謂態(tài)度抽取的人數(shù);

2)由條件知第一組在校學(xué)生人數(shù),分別求出,,由此能求出的分布列和數(shù)學(xué)期望.

試題解析:(1抽到持應(yīng)該保留態(tài)度的人的概率為,,解得,無所謂態(tài)度的人數(shù)共有應(yīng)在無所謂態(tài)度抽取人;

2)由(1)知持應(yīng)該保留態(tài)度的一共有人,在所抽取的人中,在校學(xué)生為人,社會人士為人,于是第一組在校學(xué)生人數(shù),,,,

,,,即的分布列為:









.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對貧困家庭自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶貸款額為萬元,貸款期限有個月、個月、個月、個月、個月五種,這五種貸款期限政府分別需要補(bǔ)助元、元、元、元、元,從年享受此項(xiàng)政策的困難戶中抽取了戶進(jìn)行了調(diào)查統(tǒng)計,選取貸款期限的頻數(shù)如下表:

貸款期限

個月

個月

個月

個月

個月

頻數(shù)

以商標(biāo)各種貸款期限的頻率作為年貧困家庭選擇各種貸款期限的概率.

(1)某小區(qū)年共有戶準(zhǔn)備享受此項(xiàng)政策,計算其中恰有兩戶選擇貸款期限為個月的概率;

(2)設(shè)給享受此項(xiàng)政策的某困難戶補(bǔ)貼為元,寫出的分布列,若預(yù)計年全市有萬戶享受此項(xiàng)政策,估計年該市共要補(bǔ)貼多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由數(shù)列中的項(xiàng)構(gòu)成新數(shù)列,,…,,…是首項(xiàng)為1,公比為的等比數(shù)列.

(1)數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后拋擲兩枚大小相同的骰子.

1)求點(diǎn)數(shù)之和出現(xiàn)7點(diǎn)的概率;
2)求出現(xiàn)兩個6點(diǎn)的概率;

(3)求點(diǎn)數(shù)之和能被3整除的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊長,已知a、b、c成等比數(shù)列,且a2﹣c2=ac﹣bc,
(1)求∠A的大。
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),動點(diǎn)P 滿足:|PA|=2|PB|

(1)若點(diǎn)P的軌跡為曲線,求此曲線的方程;

(2)若點(diǎn)Q在直l1: x+y+3=0上,直線l2經(jīng)過點(diǎn)Q且與曲線只有一個公共點(diǎn)M,求|QM|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, 中點(diǎn), 的中點(diǎn).

證明: ;

求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為 ,且圖象上一個最高點(diǎn)為M( ,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移 個單位長度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[﹣ , ],使得不等式g(x0)+2≤log3m成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

同步練習(xí)冊答案