已知拋物線.
(1)若直線與拋物線相交于兩點,求弦長;
(2)已知△的三個頂點在拋物線上運動.若點在坐標原點,邊過定點,點上且,求點的軌跡方程.

(1);(2)).

解析試題分析:(1)這是解析幾何中的常規(guī)問題,注意設(shè)而不求思想方法的使用;(2)求軌跡方程的方法有:直接法、定義法、代入轉(zhuǎn)移法、幾何法、參數(shù)法等,這里使用的是直接法,直接法的步驟是:建系、設(shè)點、列式、坐標化、化簡整理、最后是多退少補,特別要注意多退少補.
試題解析:(1)由,消去整理得:               2分
設(shè),則,
所以             6分
(注:用其他方法也相應(yīng)給分)
(2)設(shè)點的坐標為,由邊所在的方程過定點,
                                        8分
 
所以, 即)                 14分
(注:沒寫扣1分)
考點:1.直線與拋物線;2.求軌跡方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓 的離心率為 ,且過點

(Ⅰ)求橢圓的標準方程;
(Ⅱ)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若
(i)求 的最值:
(i i)求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓和動圓,直線:分別有唯一的公共點
(Ⅰ)求的取值范圍;
(Ⅱ)求的最大值,并求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
點(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:和直線L:="1," 橢圓的離心率,坐標原點到直線L的距離為
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓C相交于M、N兩點,試判斷是否存在值,使以MN為直徑的圓過定點E?若存在求出這個值,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的方程為,直線l過定點,斜率為k.當k為何值時,直線l與該拋物線:只有一個公共點;有兩個公共點;沒有公共點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準線方程;
(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知焦點在軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標準方程是                

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若橢圓經(jīng)過點(2,3),且焦點為,則這個橢圓的離心率等于_________________:

查看答案和解析>>

同步練習冊答案