設(shè)變量x,y滿足約束條件
x-y≥0
x+y≤4
y≥1
,則目標(biāo)函數(shù)z=2x+y的最小值為( 。
A、2B、3C、5D、6
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
x-y≥0
x+y≤4
y≥1
作出可行域如圖,

化目標(biāo)函數(shù)z=2x+y為y=-2x+z,
由圖可知,當(dāng)直線y=-2x+z過A(1,1)時直線在y軸上的截距最小,z最小,為2×1+1=3.
故選:B.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形ABCD中,E為AB的三等分點,即AB=3AE,F(xiàn)為AD的中點,求證:直線EF與平面BCD相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=2,BC=1,AA1=1(利用空間向量求解及證明).
(1)求直線AD1與B1D所成角;
(2)證明:BD1⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
(1)“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
(2)對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x);
(3)函數(shù)f(x)=loga
3+x
3-x
(a>0,a≠1)是偶函數(shù);
(4)若
a
b
=
b
c
b
0
,則
a
=
c

其中真命題的個數(shù)是為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、命題“若x=1則x2=1”的否命題為“若x2≠1,則x≠1”
B、命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”
C、“x=y”是“sinx=siny”的充分不必要條件
D、“命題p,q中至少有一個為真命題”是“p或q為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則z=
x+1
2y+1
的范圍( 。
A、[
3
4
,
7
2
]
B、[
4
3
,
7
2
]
C、[
2
7
,
4
3
]
D、(
4
3
,
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x+3
x-1
≥-1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“θ≠
π
3
”是“cosθ≠
1
2
”的( 。
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an+1,則Sn=(  )
A、2n-1
B、(
3
2
n-1
C、(
2
3
n-1
D、
1
2n-1

查看答案和解析>>

同步練習(xí)冊答案