已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,e4
D、(e4,+∞)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)單調(diào)性的性質(zhì)
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:h(x)=
f(x)
ex
,利用導(dǎo)數(shù)和已知即可得出其單調(diào)性.再利用函數(shù)的奇偶性和已知可得h(0)=1,即可得出.
解答: 解:設(shè)h(x)=
f(x)
ex
則h′(x)=
ex(f′(x)-f(x))
(ex)2
,
∵f′(x)<f(x),∴h′(x)<0.
所以函數(shù)h(x)是R上的減函數(shù),
∵函數(shù)f(x+2)是偶函數(shù),
∴函數(shù)f(-x+2)=f(x+2),
∴函數(shù)關(guān)于x=2對稱,
∴f(0)=f(4)=1,
原不等式等價(jià)為h(x)<1,
∴不等式f(x)<ex等價(jià)h(x)<1?h(x)<h(0),
f(x)
ex
<1=
f(0)
e0
.∵h(yuǎn)(x)在R上單調(diào)遞減,
∴x>0.
故選:B.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用函數(shù)的單調(diào)性解不等式、函數(shù)的奇偶性及對稱性的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x-2x2+1的單調(diào)遞增區(qū)間為( 。
A、{-∞,-
3
4
]
B、[
3
4
,+∞}
C、[-∞,
3
4
}
D、[-
3
4
.+∞}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠A,∠B,∠C所對的邊長分別為a,b,c,若∠C=90°,a=8,∠B=30°,則b=
 
,c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩個(gè)分類變量x和y的列聯(lián)表為:
y1y2合計(jì)
x1104555
x2203050
合計(jì)3075105
則x與y之間有關(guān)系的可能性為( 。
A、0.1%B、99.9%
C、97.5%D、0.25%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x1,y1)是函數(shù)f(x)=2x上一點(diǎn),點(diǎn)Q(x2,y2)是函數(shù)g(x)=2lnx上一點(diǎn),若存在x1,x2使得|PQ|≤
2
5
5
成立,則x1的值為( 。
A、
1
5
B、
2
5
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
b
中,|
a
|≠0,
b
=t
a
(t∈R).對于使命題“?t>1,|
c
-
b
|≥|
c
-
a
|”為真的非零向量
c
,給出下列命題:
①?t>1,(
c
-
a
)•( 
b
-
a
)≤0;    ②?t>1,( 
c
-
a
)•(
b
-
a
)>0;
③?t∈R,(
c
-
a
)•( 
c
-
b
)<0;   ④?t∈R,(
c
-
a
)•(
c
-
b
)<0.
則以上四個(gè)命題中的真命題是(  )
A、①④B、②③
C、①②④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校開設(shè)A類課3門,B類課5門,一位同學(xué)從中共選3門,若要求兩類課程中各至少選一門,則不同的選法共有
( 。
A、15種B、30種
C、45種D、90種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn和通項(xiàng)an滿足2Sn+an=1,數(shù)列{bn}中,b1=1,b2=
1
2
,
2
bn+1
-
1
bn
-
1
bn+2
=0(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=
an
bn
,且Tn=c1+c2+c3+…+cn,求Tn?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對角線BD把△BCD折起,使點(diǎn)C移到點(diǎn)P且點(diǎn)P在面ABD內(nèi)的射影O恰好落在AB上.
(1)求證:AP⊥BP;
(2)求二面角P-BD-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案