11.若函數(shù)f(x)=loga2-1(2x+1)在(-$\frac{1}{2}$,0)上恒有f(x)>0,則實(shí)數(shù)a的取值范圍是($-\sqrt{2}$,-1)∪(1,$\sqrt{2}$).

分析 可根據(jù)x的范圍求出2x+1的范圍,這樣由f(x)>0及對(duì)數(shù)函數(shù)的單調(diào)性便可得出0<a2-1<1,這樣解出a的范圍即可.

解答 解:∵$x∈(-\frac{1}{2},0)$;
∴2x+1∈(0,1),且$lo{g}_{{a}^{2}-1}(2x+1)>0$;
∴0<a2-1<1;
解得$-\sqrt{2}<a<-1$,或$1<a<\sqrt{2}$;
∴實(shí)數(shù)a的取值范圍是$(-\sqrt{2},-1)∪(1,\sqrt{2})$.
故答案為:$(-\sqrt{2},-1)∪(1,\sqrt{2})$.

點(diǎn)評(píng) 考查不等式的性質(zhì),對(duì)數(shù)函數(shù)的定義,以及對(duì)數(shù)函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知直線$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$(t為參數(shù))與曲線$\left\{{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}}\right.$(θ為參數(shù))相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x0是方程2x=$\frac{1}{x}$的解,則x0∈(  )
A.(0.1,0.2)B.(0.3,0.4)C.(0.5,0.7)D.(0.9,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知cos(α+$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{α}{2}$-β)=$\frac{1}{3}$,其中0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π.
(1)求tan(2α+β)的值;
(2)求cos(3α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|2x-1|+|x+1|.
(1)求f(x)≥2的解集;
(2)若函數(shù)f(x)的最小值為m,a,b均為正實(shí)數(shù),a+b=m,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(  )
A.y=$\frac{1}{x}$B.y=|x|C.y=e-xD.y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB是⊙O的一條弦,延長(zhǎng)AB到點(diǎn)C,使得AB=BC,過點(diǎn)B作BD⊥AC且DB=AB,連接AD與⊙O交于點(diǎn)E,連接CE與⊙O交于點(diǎn)F.
(Ⅰ)求證:D,F(xiàn),B,C四點(diǎn)共圓;
(Ⅱ)若AB=$\sqrt{6}$,DF=$\sqrt{3}$,求BE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面BCC1B1,AB⊥BB1,AB=BC=2,BB1=4,∠BCC1=60°.
(I)求證:C1B⊥AC;
(Ⅱ)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a>0,b>0,且$\frac{1}{a}+\frac{1}+2\sqrt{ab}$的最小值為t.
(1)求實(shí)數(shù)t的值;
(2)解關(guān)于x的不等式:|2x+1|+|2x-1|<t.

查看答案和解析>>

同步練習(xí)冊(cè)答案