分析 根據(jù)函數(shù)的單調(diào)性將不等式進行變形即可得到結(jié)論.
解答 解:不等式f(${\sqrt{x+1}}$)>$\sqrt{x-1}$•f(${\sqrt{{x^2}-1}}$)等價為:
${\sqrt{x+1}}$•f(${\sqrt{x+1}}$)>$\sqrt{x-1}$•${\sqrt{x+1}}$•f(${\sqrt{{x^2}-1}}$),
即${\sqrt{x+1}}$•f(${\sqrt{x+1}}$)>${\sqrt{{x^2}-1}}$•f(${\sqrt{{x^2}-1}}$),
設(shè)g(x)=x•f(x),
則g(${\sqrt{x+1}}$)>g(${\sqrt{{x^2}-1}}$),
∵函數(shù)y=x•f(x)在(-∞,+∞)上單調(diào)遞增,
∴不等式等價為$\left\{\begin{array}{l}{x+1≥0}\\{x-1≥0}\\{x^2-1≥0}\\{\sqrt{x+1}>\sqrt{{x}^{2}-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≥-1}\\{x≥1}\\{x≥1或x≤-1}\\{x+1>{x}^{2}-1}\end{array}\right.$,即$\left\{\begin{array}{l}{x≥1}\\{x^2-x-2<0}\end{array}\right.$,
則$\left\{\begin{array}{l}{x≥1}\\{-1<x<2}\end{array}\right.$,
解得1≤x<2,
故不等式的解集為[1,2),
故答案為:[1,2).
點評 本題主要考查不等式的求解,根據(jù)函數(shù)單調(diào)性,將不等式進行等價轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
月份 | 2 | 3 | 4 | 5 | 6 |
y(千盒) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5或6 | B. | 7或8 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com