6.設(shè)點(diǎn)A(3,y)(y≥3),B(x,x2)(0≤x≤2),則直線(xiàn)AB傾斜角的取值范圍是[0,$\frac{π}{2}$)∪[$\frac{3}{4}π$,π).

分析 先求出A、B兩點(diǎn)連線(xiàn)所在直線(xiàn)斜率,由此能求出直線(xiàn)AB的傾斜角的取值范圍.

解答 解:∵點(diǎn)A(3,y)(y≥3),B(x,x2)(0≤x≤2),
∴A(3,3),B(2,4),直線(xiàn)的斜率取最小值,此時(shí)kAB=-1,
∴直線(xiàn)AB斜率k∈[-1,+∞)
設(shè)傾斜角為α,則tanα∈[-1,+∞)
∴α∈[0,$\frac{π}{2}$)∪[$\frac{3}{4}π$,π).
故答案為[0,$\frac{π}{2}$)∪[$\frac{3}{4}π$,π).

點(diǎn)評(píng) 本題考查直線(xiàn)的傾斜角的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意斜率公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)=ax3-x2+x-5在(-∞,+∞)上單調(diào)遞增,則a的取值范圍是( 。
A.a>$\frac{1}{3}$B.a<$\frac{1}{3}$C.a≤$\frac{1}{3}$D.a≥$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x2-2x-3≤0},集合B={x|log2x>1},則A∩B=(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)為(-∞,+∞)上的奇函數(shù),則f(0)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算:(lg$\frac{1}{4}$-lg25)÷100${\;}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{m}{x}$的圖象過(guò)點(diǎn)P(1,5).
(Ⅰ)求實(shí)數(shù)m的值,并證明函數(shù)f(x)是奇函數(shù);
(Ⅱ)利用單調(diào)性定義證明f(x)在區(qū)間[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)y=loga(2-ax)在x∈[0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(1,2)C.(0,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知集合M是滿(mǎn)足下列條件的函數(shù)f(x)的全體:
(1)f(x)是偶函數(shù)但不是奇函數(shù);
(2)函數(shù)f(x)有零點(diǎn).那么在下列函數(shù)中:
①f(x)=1-|x|
 ②f(x)=ex+e-x-2
③f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$     
④f(x)=x2-x-1+lnx
⑤f(x)=2sin(x-$\frac{π}{2}$)-1
屬于集合M的有①②⑤.(寫(xiě)出所有符合條件的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)P(1,$\frac{3}{2}$),離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)AB是經(jīng)過(guò)橢圓右焦點(diǎn)F的任一弦,問(wèn):在x軸上是否存在定點(diǎn)C,使得$\overrightarrow{CA}$•$\overrightarrow{CB}$為常數(shù)?若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案