解:當(dāng)直線l⊥x軸時(shí),,不合題意.?
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為?
y=k(x-2).?
由?
得(3-k2)x2+4k2x-4k2-3=0.①?
因?yàn)橹本與雙曲線的右支交于不同兩點(diǎn),所以3-k2≠0.?
設(shè)P(x1,y1),Q(x2,y2),則x1,x2是方程①的兩個(gè)正根,于是?
有?
所以k2>3.②?
,?
又(x1-x2)2=(x1+x2)2-4x1x2=,則|x1-x2|=.?
又,∴,解得k=±3.?
∵k=±3滿足②式,∴k=±3符合題意.?
所以所求直線的方程為y=±3(x-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年內(nèi)蒙古高三下學(xué)期綜合檢測(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
雙曲線=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,點(diǎn)M為線段PQ的中點(diǎn).若點(diǎn)M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2)設(shè)F是雙曲線的右焦點(diǎn),A、B在雙曲線上,且=-2,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷4(文科)(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷4(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com